
Architecture-Specific Performance Optimization of
Compute-Intensive FaaS Functions

Mohak Chadha∗, Anshul Jindal∗, Michael Gerndt∗
∗Chair of Computer Architecture and Parallel Systems, Technische Universität München

Garching (near Munich), Germany
Email: mohak.chadha@tum.de, jindal@in.tum.de, gerndt@in.tum.de

Abstract—FaaS allows an application to be decomposed into
functions that are executed on a FaaS platform. The FaaS plat-
form is responsible for the resource provisioning of the functions.
Recently, there is a growing trend towards the execution of
compute-intensive FaaS functions that run for several seconds.
However, due to the billing policies followed by commercial
FaaS offerings, the execution of these functions can incur
significantly higher costs. Moreover, due to the abstraction of
underlying processor architectures on which the functions are
executed, the optimization of these functions is challenging. As
a result, most FaaS functions use pre-compiled libraries generic
to x86-64 leading to performance degradation. In this paper,
we examine the underlying processor architectures for Google
Cloud Functions (GCF) and determine their prevalence across
the 19 available GCF regions. We modify, adapt, and optimize
a representative set of six compute-intensive FaaS workloads
written in Python using Numba, a JIT compiler based on LLVM,
and present results wrt performance, memory consumption, and
costs on GCF. Results from our experiments show that the
optimization of FaaS functions can improve performance by
18.2x (geometric mean) and save costs by 76.8% on average
for the six functions. Our results show that optimization of the
FaaS functions for the specific architecture is very important. We
achieved a maximum speedup of 1.79x by tuning the function
especially for the instruction set of the underlying processor
architecture.

Index Terms—Function-as-a-service (FaaS), serverless com-
puting, performance optimization, cost, heterogeneity, Numba,
LLVM

I. INTRODUCTION

Since the introduction of AWS Lambda [1] by Ama-
zon in 2014, serverless computing has grown to support a
wide variety of applications such as machine learning [2],
map/reduce-style jobs [3], and compute-intensive scientific
workloads [4], [5], [6], [7]. Function-as-a-Service (FaaS),
a key enabler of serverless computing allows a traditional
monolithic application to be decomposed into fine-grained
functions that are executed in response to event triggers or
HTTP requests [8] on a FaaS platform. Most commercial FaaS
platforms such as AWS Lambda, Google Cloud Functions
(GCF) [9] enable the deployment of functions along with a
list of static dependencies. The FaaS platform is responsible
for generating containers using the static dependencies and the
isolation, execution of these containers. These containers are
commonly referred to as function instances.

FaaS platforms follow a process-based model for resource
management, i.e., each function instance has a fixed number

of cores and quantity of memory associated with it [10]. While
today’s commercial FaaS platforms such as Lambda, GCF
abstract details about the backend infrastructure management
away from the user, they still expose the application developers
to explicit low-level decisions about the amount of memory
to allocate to a respective function. These decisions affect
the provisioning characteristics of a FaaS function in two
ways. First, the amount of CPU provisioned for the function,
i.e., some providers increase the amount of compute available
to the function when more memory is assigned [11], [12].
Selecting an appropriate memory configuration is an opti-
mization problem due to the trade-offs between decreasing
function execution time with increasing memory configuration
and costs. Moreover, assigning more memory than desired
can lead to significant resource over-provisioning and reduced
malleability [13]. Second, the addition of a per-invocation
duration-utilization product fee measured in GB-Second (and
GHz-Second with GCF [14]). FaaS is advertised as a pay-per-
use model, where the users are billed based on the execution
time of the functions measured typically in 100ms (GCF) or
1ms (Azure Functions [15], Lambda) intervals. As a result,
for compute-intensive functions that require more than the
minimum amount of memory the duration-utilisation compo-
nent fee can lead to significantly higher costs. For instance,
Figure 1 shows the comparison between the average execution
time and cost [14] (excluding free tiers and networking) for
the Floatbenchmark [6] when deployed on GCF for the
different available memory profiles. Although the average
execution time decreases when more memory is configured,
the cost increases. Moreover, the memory utilized per function
instance is 60MB as shown in Figure 1 leading to signifi-
cant memory under-utilization. Improving the performance of
compute-intensive FaaS applications can lead to reduction in
execution time, memory over-provisioning, and thus reduced
costs.

While compute-intensive applications are written in a wide
variety of high-level languages such as Java, R, and Julia.
In this paper, we focus on Python since it is a widely
used high-level programming language for compute-intensive
workloads such as image-processing, logistic regression, and
scientific applications such as High Energy Physics Analy-
sis [16]. Furthermore, it is supported by all major commercial
FaaS platforms. To facilitate the performance improvement
of applications written in Python several approaches exist.
These include using an alternative Python interpreter such as

Fig. 1: Average execution time, cost, and memory consumption
for the Floatbenchmark [6] when deployed with different
memory configurations on GCF (us-west2 region).

PyPy [17], Pyston [18], and Pyjion [19] or using a Python to
C/C++ transpiler such as Cython [20], and Nuitka [21]. Using
a replacement Python interpreter has the disadvantage that it
has it’s own ecosystem of packages which are significantly
limited. Disadvantages of using a transpiler is that it offers
limited static analysis, and that the code has to be compiled
Ahead-of-Time (AOT). This leads to under-specialized and
generic code for a particular CPU’s architectural family (such
as x86-64) or can cause code bloating to cover all possible
variants [22]. To this end, we utilize Numba [23], a Just-
in-Time (JIT) compiler for Python based on LLVM [24]
for optimizing and improving the performance of compute-
intensive FaaS functions.

On invocation of a deployed function, the function instances
are launched on the FaaS platform’s traditional Infrastructure
as a Service (IaaS) virtual machines (VM) (microVMs [25] in
Lambda) offerings. However, the provisioning of such VMs
is abstracted away from the user. As a result, the user is not
aware of the details of the provisioned VMs such as the CPU
architecture and the number of virtual CPUs (vCPUs). This
makes optimizing FaaS applications challenging.

Identification of the set of architectures dynamically used in
current commercial FaaS platforms is important for the perfor-
mance optimization of FaaS functions. Previous works [10],
[12] have reported the presence of Intel based processors
ranging from Sandy Bridge-EP to Skylake-SP architectures in
the provisioned VMs However, due to the rapid development
in FaaS offerings of major cloud providers, and to offer
updated insights, we investigate the current CPU processor
architectures for GCF.

Our key contributions are:
• We investigate the current CPU architectures present in

GCF across the different regions.
• We analyze the impact of heterogeneity in the underlying

processor architectures on the performance of a FaaS
function.

• We modify, adapt, and optimize a subset of six FaaS
workloads1 from FunctionBench [6], and the Python
performance benchmark suite (Pyperf) [26] using Numba.
Although, the modified code is generic and can be used
with any cloud provider, we use GCF in this work due
to the availability of credits.

• We deploy the optimized workloads on GCF for the
different memory profiles and analyze the impact on

1https://github.com/kky-fury/Optimizing FaaS Workloads

Fig. 2: Numba [23] compilation workflow.

performance, costs, and memory consumption.
The rest of this paper is organized as follows. §II gives a

brief overview of Numba. In §III, the current techniques for
optimizing FaaS and previous works that investigated the back-
end infrastructure in major cloud provider’s FaaS offerings are
described. §IV describes our methodology for performance
measurement, FaaS workloads used in this work, and our
strategy for optimizing and maximizing the performance of the
selected workloads with Numba. In §V, the different processor
architectures we identified in the provisioned VMs across all
GCF regions and the key differences in their microarchitec-
tures that can impact the performance of functions optimized
using Numba are described. In §VI, we present our evaluations
results for the optimized FaaS workloads as compared to
their native implementations in terms of performance, memory
consumption, and costs. §VII concludes the paper and presents
an outlook.

II. BACKGROUND

Numba [23] is a function-at-a-time Just-in-Time (JIT) com-
piler for Python that is best suited for compute-intensive code
that uses Numpy [27], or scalar numerical code with loops.
In contrast to Pypy [17], Pyston [18], and Pyjion [19] it is
implemented as a library and can be dynamically loaded by
applications that use the native Python interpreter. To compile
a native Python function to machine code using Numba, the
user annotates the function using Python decorators (jit,
or njit). The decorator replaces the function object with
a special object that triggers compilation when the decorated
function is called.

Figure 2 shows the compilation workflow of a decorated
function using Numba. In the first step, the function bytecode
is analyzed. This includes recovering control flow information,
disassembling the bytecode, and converting the native stack
machine into a register machine (assigning virtual registers).
Following this, the bytecode is translated into Numba IR which
is a higher-level representation of the function logic than the
native bytecode. To infer the types of the function arguments
and variables, local type inference is applied on the generated
Numba IR by building data dependency graphs. The function
signatures are encoded and stored in a function registry. This
is done to avoid recompilation of the decorated function if it is
called again with different arguments of the same type. After
type inference, several high-level optimizations such as defer-
ring loop specializations and generation of array expressions
are performed on the generated Numba IR. Following this, the
rewritten Numba IR is translated (lowered) to LLVM IR. For
converting the generated LLVM IR to machine code, Numba

https://github.com/kky-fury/Optimizing_FaaS_Workloads

Function
Deployer

Function
Destroyer

K6 Load Generator Collected
Data

Data
Collector

…

Cloud Function Cloud Function Cloud Function Analysis

Functions
Invocations Data

Collection

Input

Optimus

Fig. 3: Architecture of our benchmarking and data
acquisition tool Optimus.

uses the high-quality compiler back-end with JIT support
provided by LLVM [24]. Finally, the generated machine code
is executed. To prevent recompilation and reduce overhead on
future runs of the same function, Numba supports file-based
caching of the generated machine code. This can be done by
passing an argument to the Python decorator.

Note that, the generated machine code can be executed
without the global interpreter lock (GIL) in Python, and thus
can run parallel threads. In this paper, we utilize the Intel
Thread Building Blocks [28] library, supported by Numba, to
parallelize and optimize certain FaaS functions [29]. Numba
also provides support for generating code for accelerators such
as Nvidia/AMD GPUs using NVVM [30] and HLC [31].
Using GPUs for accelerating FaaS functions [32] is our interest
for the investigation in the future, but is out of scope for this
work.

III. RELATED WORK

FaaS Optimizations. Majority of the previous works [33],
[34], [35] have focused on optimizing the cold start problem
associated with FaaS. Mohan et al. [33] identify the creation
of network namespaces during container startup as the major
reason for overhead for concurrent function invocations. To-
wards this, they propose the usage of Pause Containers (PCs),
i.e., a set of pre-created containers with cached networking
endpoints, thereby removing network creation from the critical
path. Shillaker et al. [34] propose Faasm which uses the
software fault isolation provided by WebAssembly to speed up
the creation of a new execution environment. However, since it
relies on language-level rather that container-based isolation, it
makes it’s integration and usage with public cloud providers
challenging. Fuerst et al. [35] develop FaasCache, based on
OpenWhisk, that implements a set of caching-based keep-alive
policies for reducing the overhead due to function cold-starts.
In contrast to previous works, we optimize the performance of
a representative set of common FaaS workloads and present
benefits/tradeoffs in terms of performance, memory consump-
tion, and costs when deployed on a public cloud provider, i.e.,
GCF.

Understanding the Backend Infrastructure in Commer-
cial FaaS Platforms. The most notable works in this domain

have been [10], [12]. Wang et al. [10] performed an in-depth
study of resource management and performance isolation with
three popular serverless computing providers: AWS Lambda,
Azure Functions, and GCF. They show that the provisioned
VMs across the different platforms have great heterogeneity
wrt the underlying processor architectures and configuration
such as number of virtual CPUs. Kelly et al. [12] provide an
updated view on the VM toplogy of the major FaaS platforms
including IBM Cloud Functions. Furthermore, they investigate
the effect of interference on the cloud platforms due to the
generated user load over a period of one month. While these
previous works have inspired some of the methodology of
the experiments used in this work, there are some key differ-
ences. First, we identify the prevalence of different processor
architectures in the provisioned VMs across the 19 different
available GCF regions. Second, we demonstrate how the un-
derlying VM configuration such as the number of vCPUs can
be used for optimizing the performance of functions. Third,
we demonstrate the effect of microarchitectural differences in
the underlying processor architectures on the performance of
FaaS functions.

JIT Compilers for Native Python. Besides Numba, there
exist other JIT compilers such as Psyco [36], and Unladen
Swallow [37]. Psyco has a built-in compiler for the native
Python interpreter and features it’s own x86-only code gener-
ator. Swallow was sponsored by Google and aimed to modify
and integrate the native Python interpreter with a JIT compiler
based on LLVM. However, both of these projects have been
discontinued. As a result, we use Numba in this work.

IV. METHODOLOGY AND BENCHMARKS

In this section, we describe Optimus, a Python-based tool
for benchmarking and collecting metric data from functions
deployed on GCF. Following this, we describe the FaaS
workloads we used and optimized in this work. Finally, we
describe our approach for optimizing and maximizing the
performance of the selected workloads using Numba.

A. Benchmarking and data acquisition

To facilitate the deployment, deletion, benchmarking, and
metric data acquisition of functions on GCF, we have de-
veloped Optimus. It’s architecture and different components
are shown in Figure 3. Optimus takes a YAML file as
input that specifies the GCF function configuration param-
eters (deployment region, memory configuration, maximum
number of function instances, timeout etc.) for the function
deployment, the function to be deployed, and configuration
parameters for the load generator. Following this, the Function
Deployer which encapsulates the functionality of the gcloud
function command-line tool deploys the function according
to the specified parameters.

For all our tests, we deploy a virtual machine (VM) to use
Optimus on a private Compute Cloud available in our Institute.
The VM is configured with 10 vCPUs (Intel Skylake-SP) and
45GB of RAM. To invoke and evaluate the performance of the
deployed function, we use k6 [38]. k6 is a developer-centric
open-source load and performance regression testing tool. It

TABLE I: Collected GCF monitoring metrics. The metric data
is sampled every 10 seconds.

Metric Description
Active instances The number of active function instances.

Function Invocations The number of function invocations.
Allocated Memory Configured function memory

Execution time The mean execution time of the function
Memory usage The mean memory usage of the function.

TABLE II: FaaS workloads used and optimized.

Category Name Suite
Micro-benchmark Floatbenchmark FunctionBench [6]

Application Montecarlo, Image processing PyPerf [26], FunctionBench [6]
ML model training Logistic regression FunctionBench [6]

Scientific simulation Nbody PyPerf [26]
Data Modelling Kerneldensityestimate (KDE) Other

uses a script for executing the test where the deployed func-
tion’s HTTP(s) endpoint along with the request parameters are
specified. As part of each k6 test, two additional parameters
are configured, i.e., Virtual Users (VUs), and duration. VUs
are the entities in k6 that execute the test and make HTTP(s)
or WebSocket requests. Duration specifies the total time a test
will run. The number of requests per second (RPS) generated
by k6 depends on the number of VUs and the time taken by
each request to complete. The number of VUs and the duration
of the test can be specified in the input YAML file.

To collect the metric data on completion of a function load
test, we implement a monitoring client using the Google Cloud
client library [39]. The different monitoring metrics extracted
as part of each test are shown in Table I. Note that, the
sampling rate for each metric is 10 seconds which is the
granularity supported by GCF [40]. The collected metric data
is written to a csv file by the monitoring client and stored in
deployed VM’s local storage. After the metric data is collected,
the Function Destroyer deletes the deployed function to free
up the resources. The data collected from several functions is
later collated and analyzed.

B. FaaS workloads

To demonstrate the advantages of optimizing compute-
intensive FaaS functions, we use a wide-variety of workloads
from different categories, i.e., Micro benchmark, application,
ML model training, scientific simulation, and data modelling.
The individual workloads and the suites to which they belong
are shown in Table II.

The Floatbenchmark performs a series of floating point
arithmetic operations, i.e, squareroot, sin, and, cos followed
by a reduction operation on the calculated values. It takes a
JSON file as input specifying the number of iterations and
returns the aggregated sum. The native implementation uses
the math Python module. The Image processing application
uses the Python Pillow [41] library to blur a RGB image
using the Gaussian Kernel and then converts the blurred image
to grayscale. Following this, the Sobel operator is applied to
the grayscale image for edge detection. As input, the workload
takes a JSON file specifying the URLs to the images. After
completion of the function the modified images are written to

a block storage. Montecarlo simulations are commonly used
in various domains such as finance, engineering, and supply
chain. It is a technique commonly used to understand the
impact of risk and uncertainty in prediction and forecasting
models. The function calculates the area of a disk by assigning
multiple random values to two variables to generate multiple
results and then averages the results to obtain an estimate. It
takes a JSON file as input specifying the number of iterations
for the computation and returns the estimated area.

Logistic regression is a popular linear statistical and ma-
chine learning technique commonly used for classification
tasks. It uses a logistic function to model the probabilities
describing the possible outcomes of a trial. The workload
uses a Numpy [27] implementation of the logistic regression
algorithm to build classifiers for the Iris [42] and Digits
datasets [43]. The NBody problem commonly used in as-
trophysics involves predicting the motion of celestial objects
interacting with each other under the influence of gravity. It
involves the evaluation of all pairwise interactions between
the involved bodies. The workload simulates the interactions
between five bodies, i.e., the Sun, Jupiter, Saturn, Uranus, and
Neptune. It takes a JSON file as input, specifying the number
of iterations for the simulation, initial positions of the bodies
according to a predefined coordinate system and returns the
positions of the bodies after the simulation.

Kernel density estimation is a statistical technique that
is used to estimate the probability density function of the
underlying distribution. It allows the creation of a smooth
curve on the given dataset which can be used for the generation
of new data. The workload uses the gaussian kernel to estimate
the density function. The native implementation is written
using Numpy. As input, it takes a JSON file specifying the
size of the distribution, bandwidth (smoothing parameter) of
the kernel, and evaluation point for computing the estimate. On
completion, it returns the calculated estimate at the evaluation
point.

C. Optimizing and maximizing performance with Numba
Our strategies for optimizing the different FaaS workloads

varied with each function. For instance, with the Floatbench-
mark it was sufficient to decorate the function with the Numba
@njit decorator (§II) to get optimal performance, while for
other workloads we identified performance bottlenecks using
the line_profiler and implemented optimized kernels,
i.e., we refactored the native implementation of the workloads
to enable automatic optimization by Numba. Towards this, we
made use of different decorators supported by Numba such
as @stencil and additional libraries such as Intel Short
Vector Math Library (SVML) [44], and Intel TBB [28]. The
@stencil decorator allows the user to specify a fixed com-
putational pattern according to which the array elements of an
input array are updated. Numba uses the decorator to generate
looping code for applying the stencil to the input array. We
used this decorator in the Image processing workload (§IV-B)
for blurring the input image with the Gaussian Kernel.

An important aspect of optimizing compute-intensive func-
tions is vectorization of loops to generate Single Instruc-
tion Multiple Data (SIMD) instructions. The LLVM backend

TABLE III: Data collected from the proc filesystem of the
provisioned VM on GCF.

Attribute System Information
vCPUs Number of virtual CPUs configured in the VM.

CPU Model CPU model present in the VM.
CPU Family Family of processors to which the CPU belongs.

Total Memory Total memory configured in the VM.

in Numba offers auto-vectorization of loops as a compiler
optimization pass. On successful vectorization, the compiler
will generate SIMD instructions depending on underlying
processor’s supported SIMD instruction set such as Advanced
Vector Extensions (AVX)-2, AVX-512 (§V-B). However, auto-
vectorization can often fail if the code analysis detects code
properties that inhibit SIMD vectorization (such as data de-
pendencies within the loop) or if compiler heuristics (such
as vectorization efficiency) determine that SIMD execution
is not beneficial. To identify if our implemented code was
vectorized and to investigate the reasons for non-vectorization,
we analyzed the generated optimization report by LLVM. We
found that the most common reason for non-vectorization of
loops to be the division of two numbers. This is because
according to the Python convention which is followed by
Numba, a division of two numbers expands into a branch
statement which raises an exception if the denominator is
zero. Since the autovectorizer offered by LLVM always fails
if branches are present inside the loop the code is not vector-
ized. We were able to ensure vectorization of such loops by
adding error_model=’numpy’ to the @njit decorator
in Numba through which division by zero results in NaN.
As a sanity check, we also checked the generated assembly
code for the @njit decorated Python function through the
inspect_asm() functionality offered by Numba. To further
enhance performance, we utilized the SVML library through
the icc_rt Python package. The SVML library provides
SIMD intrinsics, i.e., functions that correspond to a sequence
of one or more assembly instructions, for packed vector
scalar math operations. On inclusion of the icc_rt package,
Numba configures the LLVM backend to use the offered
intrinsic functions whereever possible.

In this paper, we use the Intel TBB library (§II) as a
threading backend supported by Numba to parallelize the
Floatbenchmark, Montecarlo, and individual kernels (gaussian
blur, and RGB to gray conversion) of the Image processing
workload. This was done by adding parallel=True argu-
ment to the @njit decorator. On successful parallelization,
Numba generates machine code that can run on multiple
native threads. The other benchmarks were not parallelized
due to data and loop-carried dependencies in the implemented
kernels. We use the tbb2 Python package for TBB support.

For most workloads, we also added the argument
fastmath=True to the @njit decorator. This relaxes the
IEEE 754 compliance for floating point arithmetic to gain
additional perfomance. Furthermore, it permits reassociation
of floating point operations which allows vectorization. Note

2version==2020.0.133

Fig. 4: The different Intel processor architectures across the
19 available GCF regions along with percentage of functions
invoked on them.

that, for all workloads we assume double precision floating
point operations and ensure that the resultant output from the
native and the optimized code is same within a tolerance value.
We open-source the code for the optimized FaaS workloads.

V. PLATFORM ARCHITECTURE

In this section, we describe our methodology for identifying
the underlying processor architectures in GCF. Following this,
we describe the key differences in the microarchitecture of
the determined processors that can impact the performance of
compute-intensive functions when optimized using Numba.

A. Identifying processor architectures on provisioned VMs in
GCF

The GCF service is regional, i.e., the infrastructure on which
the function instance is launched varies across the different
available regions [45]. Moreover, the billing also varies de-
pending on where the function is deployed, i.e., Tier 1, and
Tier 2 pricing [14]. Functions deployed on Tier 2 regions,
e.g, us-west2 have a higher duration-utilization product
fee measured in GB-Second and GHz-Second as compared
to functions deployed in Tier 1 regions. To investigate the
different underlying processor architectures of the provisioned
VMs across the 19 available GCF regions, similar to [10],
[12], we used the proc filesystem on Linux. Table III shows
the different attributes we read from the Linux procfs. We
obtained the number of virtual CPUs present in the provisioned
VM by counting the number of processors present in the
/proc/cpuinfo file. The CPU model and family were ob-
tained through specific fields present in the /proc/cpuinfo
file. We obtained the total memory configured in the VM using
the MemTotal attribute in the /proc/meminfo file.

We implemented a function that reads the described at-
tributes and collates them into a JSON response. Following
this, we deployed the function for the different supported
memory profiles at the time of the experiments3, i.e., <
128,256,512,1024,2048,4096 > MB across all the available
regions using the function deployer component in Optimus
(§IV-A). We fixed the number of virtual users and the duration
of the test in k6 to 60 and 1 minute respectively. As a result,
multiple function instances were launched simultaneously to
handle the requests. The obtained JSON reponses are stored on
the deployed VM as described in §IV-A. We repeated the k6
load test every two hours and collected the measurements for
a period of two weeks, leading to more than a billion function
invocations.

From the collected data, we found that across all regions the
VMs provisioned were based on Intel Xeon CPUs. Although
Google uses a proprietary hypervisor for running the function
instances which hides the model name attribute from the
Linux procfs, we were able to infer the different proces-
sor architectures using the model and family attributes [46].
Particularly, we found three different models from the same
family 6, i.e., 85-Skylake, 79-Broadwell, and 63-Haswell.
The family 6 represents Intel’s Server CPU offerings and
the numbers 85,79,63 are the different model numbers.
Note that, the Intel processor architectures Cooper Lake and
Cascade Lake also have the same model 85 as Skylake and
belong to the same family. Due to the information abstracted
by the Google’s hypervisor it was not possible to distinguish
between the different architectures. As a result, we classify it
as Skylake. Similarly, it was not possible to uniquely identify
the individual VMs as previously described by [10], [12].

In contrast to the results reported by [10], [12],
we did not find the architectures (62,6)-IvyBridge,
(45,6)-SandyBridge on any of the provisioned VMs across
all GCF regions. We believe since these models were launched
in 2013 [47] and 2012 [48] respectively, they have been
phased out. Figure 4 shows the prevalence of the differ-
ent architectures we found across the 19 available GCF
regions. For a particular region, we combined the results
for all the memory profiles. We found that Intel Skylake
was the most prevalent architecture across all regions. Only
for the regions asia-northeast1, europe-west1,
us-central1, and us-east1 we found function in-
stances being launched on VMs with all the three processor
architectures. We found the greatest heterogeneity in the
asia-northeast1 region with 16.1%, 17.9%, and 66%
of the functions in that region being invoked on VMs with
Haswell, Broadwell, and Skylake architectures respectively.
For all regions, we found that irrespective of the configured
memory profile the VMs were configured with 2GB of mem-
ory and 2 vCPUs. This was also true for a function configured
with 4GB of memory. As a sanity check, we wrote a simple
function which allocates 3GB of memory when the function
is configured with 4GB [49]. This results in a heap allocation
error. We believe that this is a bug and have reported it to
Google.

3The experiments were performed in Feb-March 2021.

TABLE IV: Input configuration parameters for the individual
FaaS workloads.

Benchmark Input configuration
Floatbenchmark 100000 iterations.

Montecarlo Forty million iterations.
Image processing 4 RGB images.

Logistic Regression Iris, digits dataset.
Nbody Fifty iterations.
KDE Five million distribution size.

B. Key Microarchitectural Differences

As described in §IV-C, a key aspect in performance opti-
mization of compute-intesive applications on modern CPUs is
the generation of SIMD instructions. While the Intel Skylake
processor has several new microarchitectural features, which
increase performance, scalability, and efficiency as compared
to the Broadwell and Haswell architectures [50], in this paper,
we focus only on differences in the SIMD instruction set.

The Intel Skylake processor supports the AVX-512 SIMD
instruction set as compared to AVX-2 in both Broadwell and
Haswell architectures. This means that each SIMD unit in
Skylake has a width of 512 bits as compared to 256 bits
in Broadwell and Haswell. As a result, with AVX-512 eight
double precision or 16 single precision floating numbers can be
used as input for vector instructions as compared to four and
eight in Broadwell and Haswell respectively. Thus, doubling
the number of FLOPS/cycle and improving performance. Note
that, both AVX-2 and AVX-512 also support other datatypes
such as long, short integers.

On successful autovectorization the LLVM backend com-
piler used in Numba will try to generate SIMD instructions
based on the highest available instruction set (§IV-C). The
SIMD instruction set used can be easily identified by examin-
ing the assembly code of the compiled jitted Numba function
(inspect_asm()). All AVX-512 instructions will use the
zMM registers, while AVX-2 instructions will use the yMM
registers. Note that, even though we classify the Intel Cascade
and Cooper Lake processors (if present on GCF) as Skylake
(§V-A), the highest SIMD instruction set supported by them
is AVX-512.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the opti-
mized FaaS workloads4 as compared to their native implemen-
tations and present results wrt average execution time, memory
consumption, and costs. Following this, we investigate how
the underlying heterogeneous processor architectures (§V-A)
effect the performance of a FaaS function. Furthermore, we
demonstrate the importance of optimizing a FaaS function
according to the SIMD instruction set of the underlying
processor architecture.

A. Experimental Configuration

To compare the optimized and the native FaaS workloads
wrt performance, memory consumption, and costs we deploy

4We use the term workload and function interchangeably.

(a) Floatbenchmark. (b) Mcbenchmark.

(c) Imageprocessing (d) Logistic Regression

(e) Nbody (f) Kerneldensityestimate

Fig. 5: The obtained speedup and average memory consumption of the six optimized FaaS workloads as compared to their
native implementations for the different memory configurations on GCF. All functions were deployed on the us-west2
region.

both versions on the us-west2 GCF region for all the
available memory profiles using Optimus as described in
§IV-A. For all workloads, we set the maximum number of
function instances to 50 and the timeout to 300 seconds. We
chose us-west2 since it was one of the regions where we
observed homogeneous processor architecture, i.e., Skylake
in the provisioned VMs (§V-A). As configuration parameters
to k6, we set the maximum number of VUs to 50 and
total duration of the load test to five minutes. For all our
experiments, we repeated the k6 test five times every two
hours and then averaged the results. The individual input
configuration parameters for each workload are shown in
Table IV.

For all the optimized FaaS workloads, we enabled file-based
caching of the compiled function machine code by adding the
cache=True argument to the @njit decorator (§II)). We
modified the Numba configuration to save the cached code in
/tmp filesystem available for GCF. This was done to ensure
that function instances provisioned on the same VM have
access to the compiled machine code to avoid overhead due to
recompilation. This behaviour was first reported by [12], where
functions executing on the same VM could read a unique id
written to a file in the tmp filesystem. From our experiments,
we observed that caching improved the speedup by 1.2x on
average as compared to the non-cached version. The speedup
was not much more significant because Numba jitted functions
are stored in memory and retain their state between warm
invocations. This means that recompilation of a Numba jitted

function (with same function argument types) only occurs with
a function cold start, i.e., when the execution environment
is run for the first time. Moreover, for the parallelized FaaS
functions, i.e., Floatbenchmark, Montecarlo, and some kernels
of the Image Processing workload (§IV-C), we configured the
number of TBB threads to two due to the availability of two
vCPUs (§V-A).

B. Comparing performance and memory consumption

For comparing the performance of the optimized FaaS
workloads with their native implementations, we calculate
the metric speedup. This is done by dividing the obtained
average execution time of the native implementation by the
obtained average execution time of the optimized workload
for a particular GCF memory configuration. On completion
of a k6 load test for a particular function, the data collector
component of Optimus queries the GCF monitoring metrics
for the function and writes them to a CSV file as described in
§IV-A. The data is sampled at a granularity of 10s supported
by GCF. For a particular function and GCF memory configu-
ration, the average execution time is obtained by calculating
the weighted average of the number of function invocations
and the mean execution time of the function (see Table I).
To compare memory consumption, we use the default GCF
monitoring metric, i.e., Memory usage and average it across
all the available datapoints. The obtained speedup and average
memory usage for the different workloads for the different
available GCF memory configurations is shown in Figure 5.

Fig. 6: Comparison of the effect of increasing the distribution
size on the average execution time for the optimized and
native versions of the Kde FaaS workload when deployed with
256MB on the us-west2 region.

We report all performance results for double precision floating
point operations.

For the Floatbenchmark, we obtained a geometric mean
speedup of 107x, 113x across the different memory config-
urations for the single-threaded and parallel versions opti-
mized with Numba respectively. The maximum speedup for
both versions, i.e., 311x, 247x is obtained for the memory
configuration of 256MB as shown in Figure 5a. The main
reason for the significant increase in the performance of
the FaaS functions optimized with Numba is the generation
and execution of machine code as described in §II. On the
other hand, for the native FaaS function, Python automatically
generates bytecode which is executed by the default bytecode
interpreter [51]. For a given code statement, the generated
bytecode contains substantially more CPU instructions as
compared to the generated machine code by LLVM leading
to a degradation in performance. As shown in Figure 5a, the
obtained speedup for both the optimized versions decreases
when more memory is configured. This is because with
increasing memory configuration GCF increases the number
of CPU cycles allocated to a function [14]. As a result, the
performance of the native FaaS function is enhanced. For the
Floatbenchmark, the optimized functions do not benefit from
an increase in the number of CPU cycles since the generated
vectorized code, due to auto-vectorization by LLVM, is more
limited by memory bandwidth than the scalar native code.
Although the underlying provisioned VMs are configured with
two vCPUs (§V-A), we do not observe an increase in speedup
for the parallel function as compared to the single-threaded
function for all memory configurations. This is because GCF
uses a process-based model for resource management, where
each function has a fixed memory and allocated CPU cycles.
Since Intel-TBB follows a fork-join model for parallel exe-
cution, the generated threads are inherently limited by the
resource constraints of the parent process. We observe that the
speedup of the parallelized function as compared to the single-
threaded version increases with the increase in the allocated
CPU clock cycles.

We obtained a geometric mean speedup of 28x, 31x for the
single-threaded and parallelized versions of the Mcbenchmark
across the different memory configurations as shown in Fig-
ure 5b. In contrast to Figure 5a, we observe a different trend
for the obtained speedup values due to memory bandwidth
not being a bottleneck. The obtained speedup for the single-

threaded function remains almost the same, i.e., 30x when
the function is configured with a memory of 1GB and higher.
On the other hand, the speedup obtained for the parallelized
function increases with increasing memory configuration, with
the maximum obtained value of 52x with 4GB of memory.
For the Image Processing workload, we obtained an average
speedup of 1.39x, 1.19x across the different memory con-
figurations for the single-threaded and parallelized versions
respectively. The speedup values obtained are comparatively
small since the native implementation of the benchmark uses
the Python Pillow library (§IV-B). The Pillow library
is implemented in C and can be directly called from the
native Python interpreter [52]. As shown in Figure 5c, the
single-threaded Numba optimized Image processing function
performs better than the native implementation due to LLVM
compiler optimizations, and vectorization using the highest
underlying SIMD instruction set (§IV-C). In contrast, Pillow
is pre-compiled and generic to x86-64. This means that the
vector instructions generated will be for the Streaming SIMD
Extensions (SSE) instruction set, which assumes a 128 bit
SIMD unit length (§V-B). The parallelized Numba optimized
function performs worse than the native implementation for
the memory configurations 512MB, 1GB, due to limited CPU
clock cycles and parallelization overhead. Similar to Figure 5b,
the performance of the parallelized function improves with a
higher memory configuration.

We observe a geometric mean speedup of 2.78x across the
different memory configurations for the Logistic Regression
(LR) function optimized with Numba. The maximum speedup
value of 3.23x is obtained for the memory configuration of
256MB as shown in Figure 5d. The native implementation
of the LR function uses Numpy which is pre-compiled for
x86-64. As a result, the Numba optimized function outper-
forms the native implementation. For the optimized Nbody
and Kernel Density Estimate functions we observe a geometric
mean speedup of 46x, 53x across the different GCF memory
configurations respectively. We observe a maximum speedup
of 51x, 61x for the optimized Nbody and KDE functions
for the memory configurations of 2GB, 1GB as shown in
Figures 5e and 5f.

For all benchmarks, we observe that the average memory
usage of the Numba optimized functions is higher than their
native implementations as shown in Figures 5a, 5b, 5c, 5d, 5e,
and 5f. This can be attributed to (i) additional variables
required for Numba’s internal compilation workflow (§II), (ii)
additional module dependencies such as LLVM, icc_rt, and
(iii) in-memory caching of the generated machine code. The
memory required for the Numba parallelized functions is more
as compared to the single-threaded functions because of the
additional intel-tbb library. Note that, due to the presence
of coarse grained memory profiles and billing policy adopted
by GCF [14], users will be charged based on the configured
memory, irrespective of the function memory usage. The
memory consumption of of the different functions is similar
across the different memory configurations leading to memory
over-provisioning.

Another advantage of the JIT compilation by LLVM sup-
ported by Numba is the explicit avoidance of creation of

(a) Floatbenchmark. (b) Mcbenchmark. (c) Imageprocessing

(d) Logistic Regression (e) Nbody (f) Kerneldensityestimate

Fig. 7: Comparison of cost per million function invocations (in USD) of the six FaaS workloads as compared to their native
implementations for the different memory configurations on GCF. The cost values highlighted with red represent the minimum
values obtained across the different memory configurations, while the cost values highlighted with purple (if present and
different) represent the values wrt the maximum percentage cost savings.

temporary arrays. Figure 6 shows the effect of increasing the
argument, distribution size on the performance of the KDE
workload. The native implementation of the KDE function
is done using Numpy as described in §IV-B. For small
distribution sizes, the native implementation performs similar
to the Numba optimized function. However, with increasing
distribution size we observe an exponential increase in the
average execution time. This can be attributed to the re-
peated allocation, deallocation of temporary internal Numpy
arrays [53], which are avoided by Numba.

C. Comparing costs

Figure 7 shows the cost per million invocations of the
optimized FaaS workloads as compared to their native im-
plementations for the different memory profiles on GCF. To
compute the invocation cost of a particular function and GCF
memory configuration, we use the obtained average execution
time (§VI-B) and round it up to the nearest 100ms increment.
Following this, we use the rounded average execution time
to calculate the function compute time in terms of the units
GB-Second and GHz-Second. The compute time depends on
the configured memory and the allocated CPU clock cycles
(defined by GCF). For instance, with a memory configuration
of 256MB, the associated clock cycles is 400MHz [14]. GCF
defines a fixed price for one second of compute time depending
on the region where the function is deployed. We use the
pre-defined price values for calculating the function compute
cost. In our calculation, we exclude the cost for free tiers and
networking. As a result, a fixed price of $0.40 per million
invocations is added to the calculated function compute cost.

For the Floatbenchmark, we observe 88% average cost
savings for the single-threaded and parallelized functions
across the different memory configurations. Although there
is a difference in the obtained speedup for the two different
optimized functions (see Figure 5a), the cost values obtained
are the same as shown in Figure 7a. This can be attributed

to the coarse-grained 100ms billing intervals used by GCF.
Note that, for FaaS providers such as AWS Lambda and Azure
functions with 1ms billing intervals the costs obtained for the
parallelized version will be less when configured with memory
greater than 256MB. The minimum cost and maximum cost
savings of $1.0 and 95.8% are obtained for the memory con-
figuration of 256MB corresponding to the maximum obtained
speedup for the two functions. We observe 96.2%, 96.4%
average cost savings for the two Numba optimized functions
of the Mcbenchmark. The minimum cost value of $25.8 is
obtained for the single threaded function when configured with
1GB of memory as shown in Figure 7b. The maximum cost
savings of 97.64% is obtained with a memory configuration
of 4GB for the parallelized function.

We observe 26.1% average cost savings for the single-
threaded Image processing function across the different mem-
ory configurations. The cost values obtained for the paral-
lelized function are higher as compared to the native imple-
mentation for the memory configurations 512MB and 1GB
respectively. But, they decrease when higher memory is con-
figured as shown in Figure 7c. The minimum cost value
of $15.9 is obtained for the single-threaded function when
configured with either 512MB, or 1GB of memory. The
maximum cost savings of 45% is obtained for the parallelized
function when configured with 4GB of memory. For the
Logistic Regression workload, we observe 55.8% average
cost savings for the Numba optimized function across the
different memory configurations. The minimum cost value
of $5.0 is obtained for the memory configuration of 1GB,
while the maximum cost savings of 67.6% is obtained for the
memory configuration of 256MB. For the optimized Nbody
function, we observe 97.47% average cost savings across
the different memory configurations. The minimum cost and
maximum cost savings of $12.0 and 97.8% are obtained for
the memory configuration of 1GB as shown in Figure 7e. We
observe 97.75% average cost savings for the optimized KDE

function across the different memory configurations. Similar
to the optimized Nbody function, the minimum cost value and
maximum cost savings of $9.6 and 98.1% are obtained for the
memory configuration of 1GB as shown in Figure 7f.

Although the speedup obtained for the different optimized
function varies across the different memory configurations
(§VI-B), we do not observe a significant difference in costs for
the Numba optimized functions across the memory configura-
tions as shown in Figure 7. GCF offers the possibility of un-
limited scaling of function instances to meet user demand [54].
To avoid memory over-provisioning and due to the significant
speedup obtained with Numba for the lowest possible memory
configuration for a particular function, the minimum memory
configuration can always be selected. Moreover, we observe
that parallelization of functions is only beneficial when config-
ured with a memory of 2GB and higher because of constraints
on the allocated CPU clock cycles.

D. Effect of heterogeneity in the underlying processor archi-
tectures on performance

To analyze the effect of different processor architectures on
the performance of a FaaS function, we use the Kernel Density
Estimate (KDE) workload and deploy it for all supported
memory configurations in the asia-northeast1 region.
We chose this region since it had the greatest heterogeneity
and prevalence of the three processor architectures (§V-A). We
instrumented the KDE workload to compute the execution time
required for calculating the estimate at the evaluation point
(§IV-B) given as input. The processor architecture is deter-
mined similarly as described in §V-A. The different attributes
are collated and returned as a JSON response. As described
in §V-B, Numba automatically generates SIMD instructions
for highest underlying instruction set. However, to emphasize
the importance of generating architecture-specific code, we
modified the Numba configuration to generate only AVX-2 and
SSE instructions on the Skylake processor. Figure 8b shows
the average execution time for the different processor architec-
tures and SIMD instruction sets across the different memory
configurations for the Numba optimized KDE function.

For all processor architectures the average execution time
decreases with increasing memory configuration since more
compute is assigned. For the native KDE implementation
(see Figure 8a), the Skylake processor obtains a speedup of
1.10x, 1.03x, on average across all memory configurations
as compared to the Haswell and Broadwell processors. On
the other hand, for the Numba optimized function, we ob-
serve an average speedup of 1.79x, 1.36x for the Skylake
processor (with AVX-512) as compared to the Haswell and
Broadwell processors respectively. Although, the native KDE
function implementation uses Numpy which is pre-compiled
for x86-64, i.e., the generated vector instructions will use the
SSE SIMD instruction set (§VI-B), we observe a difference in
performance for the different architectures. This is because of
several microarchitectural improvements to the Skylake pro-
cessor [50]. The difference in performance is more significant
for the Numba optimized function because the LLVM compiler
in Numba autovectorizes the jitted function in the KDE work-
load to generate instructions using the AVX-512 instruction set

(a) Kde Native. (b) Kde Numba

Fig. 8: Comparison of the execution times for the optimized
and native versions of the Kde FaaS workload for the dif-
ferent underlying processor architectures. The functions were
deployed on the asia-northeast1 region.

on the Skylake processor and using the AVX-2 instruction set
on the Haswell and Broadwell processors. As a sanity check,
we also confirmed this by examining the assembly code of the
jitted function and checking the registers used in the generated
vector instructions (§V-B). The Broadwell processor obtains
a speedup of 1.03x, 1.31x on average across all memory
configurations as compared to the Haswell processor for the
native and Numba optimized functions respectively. This can
be attributed to a higher Instructions per cycle (IPC) value and
reduced latency for floating point operations as compared to
the Haswell processor [55].

In comparison to the Numba optimized function with SSE
and AVX-2 generated instructions on the Skylake proces-
sor, the version with AVX-512 instructions obtains a best
speedup of 1.67x and 1.16x on average across all memory
configurations respectively. Moreover, the SSE version on
the Skylake processor is 1.23x slower on average than the
optimized version with AVX-2 instructions on the Broadwell
processor. Although there is an illusion of homogeneity in
most public FaaS offerings, the actual performance of a FaaS
function can vary depending on the underlying architecture of
the provisioned VM where the function instance is launched.
As a result, the cost incurred for the same function will also
vary.

VII. CONCLUSION & FUTURE WORK

In this paper, we adapted and optimized a representative set
of six compute-intensive FaaS workloads with Numba, i.e., a
JIT compiler based on LLVM. We determined the different
processor architectures used by GCF namely Haswell, Broad-
well, and Skylake in the underlying provisioned VMs on which
the function instances are launched. Furthermore, we identified
the prevalence of these architectures across the 19 available
GCF regions. Moreover, we demonstrated the use of underly-
ing VM configuration, i.e., number of vCPUs for parallelizing
FaaS functions. We deployed the optimized workloads on GCF
and presented results wrt performance, memory consumption,
and costs. We showed that optimizing FaaS functions with
Numba can improve performance by 44.2x and save costs by
76.8% on average across the six functions. We investigated the
effect of the underlying heterogeneous processor architectures
on the performance of FaaS functions. We found that the
performance of a particular optimized FaaS function can vary
by 1.79x, 1.36x on average depending on the underlying
processor. Moreover, under-optimization of a function based

on the underlying architecture can degrade the performance by
a value of 1.67x. In the future, we plan to investigate strategies
for caching the compiled optimized machine code to reduce
the startup times of functions.

VIII. ACKNOWLEDGEMENT

This work was supported by the funding of the German
Federal Ministry of Education and Research (BMBF) in the
scope of the Software Campus program. Google Cloud credits
were provided by the Google Cloud Platform research credits.

REFERENCES

[1] Amazon Lambda, https://aws.amazon.com/lambda/, accessed on
09/24/2020.

[2] M. Chadha, A. Jindal, and M. Gerndt, “Towards federated learning using
faas fabric,” in Proceedings of the 2020 Sixth International Workshop on
Serverless Computing, ser. WoSC’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 49–54.

[3] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
cloud: Distributed computing for the 99%,” in Proceedings of the 2017
Symposium on Cloud Computing, 2017, pp. 445–451.

[4] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “Funcx: A federated function serving fabric
for science,” in Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, pp.
65–76. [Online]. Available: https://doi.org/10.1145/3369583.3392683

[5] T. J. Skluzacek, R. Chard, R. Wong, Z. Li, Y. N. Babuji, L. Ward,
B. Blaiszik, K. Chard, and I. Foster, “Serverless workflows for
indexing large scientific data,” in Proceedings of the 5th International
Workshop on Serverless Computing, ser. WOSC ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 43–48. [Online].
Available: https://doi.org/10.1145/3366623.3368140

[6] J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD). IEEE, 2019, pp. 502–504.

[7] A. Jindal, M. Gerndt, M. Chadha, V. Podolskiy, and P. Chen, “Function
delivery network: Extending serverless computing for heterogeneous
platforms,” Software: Practice and Experience.

[8] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A preliminary
review of enterprise serverless cloud computing (function-as-a-service)
platforms,” in 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 2017, pp. 162–169.

[9] Google Cloud Functions, https://cloud.google.com/functions, accessed
09/24/2020.

[10] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), 2018, pp. 133–146.

[11] D. Jackson and G. Clynch, “An investigation of the impact of language
runtime on the performance and cost of serverless functions,” in 2018
IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), 2018, pp. 154–160.

[12] D. Kelly, F. Glavin, and E. Barrett, “Serverless computing: Behind the
scenes of major platforms,” in 2020 IEEE 13th International Conference
on Cloud Computing (CLOUD), 2020, pp. 304–312.

[13] J. Spillner, “Resource management for cloud functions with memory
tracing, profiling and autotuning,” ser. WoSC’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 13–18. [Online].
Available: https://doi.org/10.1145/3429880.3430094

[14] Google Cloud Functions Pricing, https://cloud.google.com/functions/
pricing, accessed 09/24/2020.

[15] Azure Functions, https://azure.microsoft.com/en-us/services/functions/,
accessed on 09/24/2020.

[16] coffea - Columnar Object Framework For Effective Analysis, https://
coffeateam.github.io/coffea/, accessed 09/24/2020.

[17] PyPy - an alternative implementation of Python, https://www.pypy.org/,
accessed on 09/24/2020.

[18] Pyston v2, https://blog.pyston.org/, accessed on 09/24/2020.
[19] Pyjion, https://github.com/tonybaloney/Pyjion, accessed on 09/24/2020.
[20] Cython, https://github.com/cython/cython, accessed 09/24/2020.
[21] Nuitka, https://nuitka.net/, accessed 09/24/2020.

[22] A. Quach and A. Prakash, “Bloat factors and binary specialization,”
in Proceedings of the 3rd ACM Workshop on Forming an Ecosystem
Around Software Transformation, ser. FEAST’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 31–38. [Online].
Available: https://doi.org/10.1145/3338502.3359765

[23] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, ser. LLVM ’15. New York, NY,
USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2833157.2833162

[24] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86.

[25] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 419–434. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/agache

[26] The Python Benchmark Suite, https://github.com/python/pyperformance,
accessed on 09/24/2020.

[27] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith et al., “Array
programming with numpy,” Nature, vol. 585, no. 7825, pp. 357–362,
2020.

[28] Intel Thread Building Blocks (TBB), https://github.com/oneapi-src/
oneTBB, accessed 09/24/2020.

[29] T. A. Anderson, H. Liu, L. Kuper, E. Totoni, J. Vitek, and T. Shpeisman,
“Parallelizing julia with a non-invasive dsl,” in 31st European Con-
ference on Object-Oriented Programming (ECOOP 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[30] NVVM compiler IR, https://docs.nvidia.com/cuda/nvvm-ir-spec/index.
html, accessed on 09/24/2020.

[31] AMD Heterogeneous System Architecture HSA, https://github.com/
HSAFoundation/, accessed on 09/24/2020.

[32] D. M. Naranjo, S. Risco, C. de Alfonso, A. Pérez, I. Blanquer,
and G. Moltó, “Accelerated serverless computing based on gpu
virtualization,” Journal of Parallel and Distributed Computing, vol.
139, pp. 32–42, 2020. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0743731519303533

[33] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and
V. Sukhomlinov, “Agile cold starts for scalable serverless,” in 11th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19).
Renton, WA: USENIX Association, Jul. 2019. [Online]. Available:
https://www.usenix.org/conference/hotcloud19/presentation/mohan

[34] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient
stateful serverless computing,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, Jul. 2020, pp.
419–433. [Online]. Available: https://www.usenix.org/conference/atc20/
presentation/shillaker

[35] A. Fuerst and P. Sharma, “Faascache: Keeping serverless computing
alive with greedy-dual caching,” 2021.

[36] Psyco-a python extension module., http://psyco.sourceforge.net/, ac-
cessed 09/24/2020.

[37] Unladen Swallow-Optimizing CPython, https://code.google.com/
archive/p/unladen-swallow/, accessed 09/24/2020.

[38] k6, https://k6.io/docs/, accessed 09/24/2020.
[39] Google Cloud Monitoring, https://cloud.google.com/functions/docs/

monitoring/metrics, accessed 09/24/2020.
[40] Quotas and limits, https://cloud.google.com/monitoring/quotas, accessed

09/04/2021.
[41] Python Pillow Library, https://pillow.readthedocs.io/en/stable/, accessed

on 09/24/2020.
[42] Iris, https://archive.ics.uci.edu/ml/datasets/iris, accessed on 09/24/2020.
[43] ——, https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+

Handwritten+Digits, accessed on 09/24/2020.
[44] Intrinsics for Short Vector Math Library (SVML) Operations,

https://software.intel.com/content/www/us/en/develop/documentation/
cpp-compiler-developer-guide-and-reference/top.html, accessed on
09/24/2020.

[45] GCF Locations, https://cloud.google.com/functions/docs/locations, ac-
cessed on 09/24/2020.

[46] Intel CPUs, https://en.wikichip.org/wiki/intel/cpuid, accessed on
09/24/2020.

[47] Intel IvyBridge, https://ark.intel.com/content/www/us/en/ark/products/
75275/intel-xeon-processor-e5-2670-v2-25m-cache-2-50-ghz.html, ac-
cessed on 09/24/2020.

https://aws.amazon.com/lambda/
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3366623.3368140
https://cloud.google.com/functions
https://doi.org/10.1145/3429880.3430094
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://azure.microsoft.com/en-us/services/functions/
https://coffeateam.github.io/coffea/
https://coffeateam.github.io/coffea/
https://www.pypy.org/
https://blog.pyston.org/
https://github.com/tonybaloney/Pyjion
https://github.com/cython/cython
https://nuitka.net/
https://doi.org/10.1145/3338502.3359765
https://doi.org/10.1145/2833157.2833162
https://www.usenix.org/conference/nsdi20/presentation/agache
https://github.com/python/pyperformance
https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://github.com/HSAFoundation/
https://github.com/HSAFoundation/
https://www.sciencedirect.com/science/article/pii/S0743731519303533
https://www.sciencedirect.com/science/article/pii/S0743731519303533
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
http://psyco.sourceforge.net/
https://code.google.com/archive/p/unladen-swallow/
https://code.google.com/archive/p/unladen-swallow/
https://k6.io/docs/
https://cloud.google.com/functions/docs/monitoring/metrics
https://cloud.google.com/functions/docs/monitoring/metrics
https://cloud.google.com/monitoring/quotas
https://pillow.readthedocs.io/en/stable/
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html
https://cloud.google.com/functions/docs/locations
https://en.wikichip.org/wiki/intel/cpuid
https://ark.intel.com/content/www/us/en/ark/products/75275/intel-xeon-processor-e5-2670-v2-25m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75275/intel-xeon-processor-e5-2670-v2-25m-cache-2-50-ghz.html

12

[48] Intel SandyBridge, https://ark.intel.com/content/www/us/en/ark/
products/64595/intel-xeon-processor-e5-2670-20m-cache-2-60-ghz.
html, accessed on 09/24/2020.

[49] AWS Blog - Memory Leaks, https://aws.amazon.com/blogs/compute/
operating-lambda-debugging-configurations-part-2/, accessed on
09/24/2020.

[50] R. Schöne, T. Ilsche, M. Bielert, A. Gocht, and D. Hackenberg, “Energy
efficiency features of the intel skylake-sp processor and their impact on
performance,” in 2019 International Conference on High Performance
Computing & Simulation (HPCS). IEEE, 2019, pp. 399–406.

[51] M. F. Sanner et al., “Python: a programming language for software
integration and development,” J Mol Graph Model, vol. 17, no. 1, pp.
57–61, 1999.

[52] Python/C API Reference Manual, https://docs.python.org/3/c-api/index.
html, accessed on 09/24/2020.

[53] Numpy Internals, https://numpy.org/doc/stable/reference/internals.html,
accessed on 09/24/2020.

[54] Controlling Scaling Behavior, https://cloud.google.com/functions/docs/
max-instances, accessed on 09/24/2020.

[55] M. K. Kumashikar, S. G. Bendi, S. Nimmagadda, A. J. Deka, and
A. Agarwal, “14nm broadwell xeon® processor family: Design method-
ologies and optimizations,” in 2017 IEEE Asian Solid-State Circuits
Conference (A-SSCC), 2017, pp. 17–20.

https://ark.intel.com/content/www/us/en/ark/products/64595/intel-xeon-processor-e5-2670-20m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/64595/intel-xeon-processor-e5-2670-20m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/64595/intel-xeon-processor-e5-2670-20m-cache-2-60-ghz.html
https://aws.amazon.com/blogs/compute/operating-lambda-debugging-configurations-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-debugging-configurations-part-2/
https://docs.python.org/3/c-api/index.html
https://docs.python.org/3/c-api/index.html
https://numpy.org/doc/stable/reference/internals.html
https://cloud.google.com/functions/docs/max-instances
https://cloud.google.com/functions/docs/max-instances

