
Poster: Function Delivery Network: Extending
Serverless to Heterogeneous Computing

Anshul Jindal∗, Mohak Chadha∗, Michael Gerndt∗, Julian Frielinghaus∗, Vladimir Podolskiy∗, Pengfei Chen†,
∗Chair of Computer Architecture and Parallel Systems, Technische Universität München, Garching (near Munich), Germany

∗Email: {anshul.jindal, mohak.chadha}@tum.de, gerndt@in.tum.de, {julian.frielinghaus, v.podolskiy}@tum.de
†School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China

†Email: chenpf7@mail.sysu.edu.cn

Abstract—Several of today’s cloud applications are spread over
heterogeneous connected computing resources and are highly
dynamic in their structure and resource requirements. However,
serverless computing and Function-as-a-Service (FaaS) platforms
are limited to homogeneous clusters and homogeneous functions.

We introduce an extension of FaaS to heterogeneous computing
and to support heterogeneous functions through a network of dis-
tributed heterogeneous target platforms called Function Delivery
Network (FDN). A target platform is a combination of a cluster
of a homogeneous computing system and a FaaS platform on
top of it. FDN provides Function-Delivery-as-a-Service (FDaaS),
delivering the function invocations to the right target platform.
We showcase the opportunities such as collaborative execution
between multiple target platforms and varied target platform’s
characteristics that the FDN offers in fulfilling two objectives:
Service Level Objective (SLO) requirements and energy efficiency
when scheduling functions invocations by evaluating over five
distributed target platforms.

Index Terms—Serverless, Function-as-a-Service, Heteroge-
neous Computing, Function Delivery Network

I. INTRODUCTION

Programming and deploying the applications that are spread
over the computing continuum is highly challenging due to the
heterogeneity of the underlying hardware, varying compute
and data access requirements across time and application
components. Serverless computing has made the deployment
of applications and their scaling easier by abstracting the
server management and infrastructure decisions away from
the users [1]. However, Function-as-a-Service (FaaS), a key
enabler of serverless computing is limited to homogeneous
computing as well as to homogeneous functions. Furthermore,
FaaS platforms do not account for the underlying hetero-
geneity in the system architectures. As a result, application
developers cannot optimize the applications functions for var-
ious heterogeneous systems like mini-computers (such as edge
devices), High Performance Computing nodes, and FPGAs.

In this work, we introduce an extension to the concept of
FaaS as a programming interface for heterogeneous computing
and to support heterogeneous functions with varying compu-
tational and data requirements. This extension is a network
of distributed heterogeneous target platforms called Function
Delivery Network (FDN) analogous to Content Delivery Net-
works [2]. A target platform is a combination of a cluster of
homogeneous nodes and a FaaS platform on top of it. FDN
provides Function Delivery as a Service (FDaaS), delivering

the function to the right target platform based on the required
computational and data demand.

The automatic management of resources in the proposed
serverless based FDN facilitates application development by
shifting the deployment burden of the application function for
the right target platform to cloud platform. The heterogeneity
of the resources in the continuum is specifically challenging
for resource management and the integration of systems like
IoT Greengrass from Amazon [3] with application lambda
functions deployed to the edge and ARM-based SoCs with the
hardware programmability of an FPGA like Zynq boards for
general FaaS applications and will require an extension of the
FaaS platforms across heterogeneous devices. However, due to
the heterogeneity of the FDN, it offers a wide range of oppor-
tunities for meeting different objectives like SLO requirements
and energy efficiency in unconventional ways. Towards this,
we show based on our experiments the opportunities offered
by FDN in meeting these two objectives.

II. FUNCTION DELIVERY NETWORK

Figure 1 outlines the overall architecture and high-level
workflow of the proposed Function Delivery Network (FDN).
The application developer provides an application config-
uration specification which describes the functions, APIs,
permissions, configurations, and events, via a framework like
Serverless. The FDN Control Plane then manages function
deployment and data placement across target platforms, mon-
itors the overall infrastructure and applications, and provides
access control for authentication and authorization. We assume
that the FDN has access to the container images (and kernel
binaries for FPGAs) of application functions for various target
platforms. Various behavioral models are constructed during
functions invocations. These models are updated regularly in
an online learning manner. The runtime decisions of function
scheduling and data placement done by the FDN Control Plane
is based on these models. The management of target platforms
is done in a hierarchical manner, where the scheduling and
placement decisions concerning the target platforms are taken
by the FDN Control Plane, while the selection of the resources
within the target platform is delegated to the Sidecar Con-
troller (SC) within each target platform. Both the control plane
and the local SC collaboratively work together to make the
final decision. The functions invocations from the clients are



Fig. 1: Overall architecture and high level workflow of the
Function Delivery Network (FDN).

load balanced by the Courier component of the FDN Control
Plane, which automatically delivers the function invocations
to the right target platform based on the various load balancing
strategies. We designed a load balancing algorithm in addition
to the naive Round Robin and manually set Weighted Round
Robin (WRR) algorithms called Auto Weighted Round-Robin
(AWRR). It uses functions execution times and number of func-
tions instances metrics for each target across all FaaS functions
for determining the weight of each target platform relative to
the maximum execution time and the minimum number of
function instances. The primary goal of the algorithms is to
reduce the average response time across all requests.

III. EVALUATION

Experimental Configuration. We evaluate the three func-
tion benchmarks : primes-python which calculates prime
numbers till 10000000, Sentiment-Analysis which does
the sentiment analysis of the given text, and JSON-loads
which takes a large JSON file as input containing 3-D coordi-
nates and returns the average coordinates value. The first two
benchmarks are evaluated on and across four different target
platforms: (i) Google Cloud Functions (GCF) and (ii) AWS
Lambda for creating two public cloud platforms. (iii) The
private-cloud-cluster is composed of three VMs hosted on a
private cloud at the Leibniz Supercomputing Center (LRZ) [4],
with each VM having four vCPU cores and 8 GiB of memory.
(iv) hpc-node-cluster represents compute nodes from High
Performance Computing (HPC) and is a dual-socket system,
with each socket containing an Intel Cascade Lake processor
with 22 cores. OpenWhisk on top of Kubernetes is used in
both these private clusters. JSON-loads is evaluated for
showcasing the energy efficiency on hpc-node-cluster and the
edge-cluster consisting of three embedded Nvidia Jetson Nano
devices which uses OpenFaaS on top of k3s.

Results. Fig. 2 shows the function invocation response
times for the two microbenchmarks when (i) scheduled indi-
vidually on target platforms, scheduled collaboratively across
the different target platforms with (ii) naive round-robin, (iii)
manually set WRR, and (iv) AWRR using the Courier load
balancing. From the results, we can infer two conclusions:
(i) a significant increase in performance (better SLOs) with

Percentile(50) Percentile(90)0

25

50

75

100

125

150

175

In
vo

ca
tio

ns
 re

sp
on

se
 ti

m
e 

(in
 m

s)

137.0

177.4

40.7

100.3

54.5

69.871.8

137.0

57.4

136.5

58.1

95.0

59.9

116.4

AWS (US-East-1)
GCF (Europe-central)
HPC-Node-Cluster
Private-Cloud-Cluster
Round-Robin
Weighted-Round-Robin (manual)
Auto-Weighted-Round-Robin

(a) Sentiment-Analysis

Percentile(50) Percentile(90)0

1

2

3

4

5

6

7

8

In
vo

ca
tio

ns
 re

sp
on

se
 ti

m
e 

(in
 s)

7.8
8.0

6.8
7.1

1.6 1.7
2.1

2.4

4.48

7.88

1.69

6.8

1.76

6.87

AWS (US-East-1)
GCF (Europe-central)
HPC-Node-Cluster
Private-Cloud-Cluster
Round-Robin
WRR (manual)
AWRR

(b) primes-python

Fig. 2: Comparison of function invocation response times for
two microbenchmarks when they are scheduled on individual
target platforms and collaboratively across target platforms
using round-robin, WRR and AWRR load balancing.

TABLE I: Total energy consumption for edge-cluster and hpc-
node-cluster target platforms when a workload is issued.

Edge-Cluster HPC-Cluster
N 1 N 2 N 3 Socket0 Socket1

Power WithoutLoad(W) 0.45 0.39 0.48 30.67 29.56
Power WithLoad(W) 1.41 2.04 0.95 37.39 37.01

CPU energy (J) 2647.2 44645.64

collaborative scheduling across different target platforms as
compared to when the functions are invoked exclusively on
the individual platform with less resources and therefore
collaboration in the FDN provides a method to overcome the
shortcomings of individual target platforms. (ii) The developed
AWRR algorithm can automatically determine the weights of
each target platform based on different metrics and can provide
a similar performance in comparison to manual WRR.

Table I shows the energy consumed by edge-cluster and
hpc-node-cluster when a load of 400 requests per second is
invoked on the function JSON-loads deployed on each one
of them. Although, the P90 response time (6.32s) is higher
for the edge-cluster as compared to hpc-node-cluster (2.3s),
the total number of requests served is same for both target
platforms. Therefore, if a client has a SLO P90 response time
of seven seconds then both target platforms can be used for
meeting it for this workload. However, choosing edge-cluster
as the target platform for this workload saves a lot of energy.

Conclusion. Due to the current limitations of serverless
computing for applications which are highly dynamic in their
structure and computational requirements, we introduced the
Function Delivery Network (FDN). We plan to extend it
further to other heterogeneous computing devices.

REFERENCES

[1] C. S. WG, “Cncf wg-serverless whitepaper v1. 0,” https:
//gw.alipayobjects.com/os/basement prod/24ec4498-71d4-4a60-b785-
fa530456c65b.pdf, March 2018, [Online; Accessed: 15-July-2020].

[2] A. Jindal, M. Gerndt, M. Chadha, V. Podolskiy, and P. Chen, “Function
delivery network: Extending serverless computing for heterogeneous
platforms,” Software: Practice and Experience, vol. n/a, no. n/a, 2021.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.
2966

[3] “Aws iot greengrass - amazon web services,” https://aws.amazon.com/
greengrass/, (Accessed on 07/27/2020).

[4] “Lrz: Leibniz-rechenzentrum der bayerischen akademie der wis-
senschaften,” https://www.lrz.de/, (Accessed on 07/30/2020).

https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://www.lrz.de/

	Introduction
	Function Delivery Network
	Evaluation
	References

