
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

TppFaaS: Modeling Serverless
Functions Invocations via Temporal
Point Processes
MARKUS STEINBACH1, ANSHUL JINDAL1, MOHAK CHADHA1, MICHAEL GERNDT1 AND
SHAJULIN BENEDICT2
1Technical University of Munich, Garching (near Munich) 85748 Germany (e-mails: markus.steinbach@tum.de, anshul.jindal@tum.de, mohak.chadha@tum.de,
gerndt@in.tum.de)
2Indian Institute of Information Technology, Kottayam, Kerala, India (e-mail: shajulin@iiitkottayam.ac.in)

Corresponding author: A. Jindal (e-mail: anshul.jindal@tum.de).

This work was supported by the funding of the German Federal Ministry of Education and Research (BMBF) in the scope of the Software
Campus program. Google Cloud credits in this work were provided by the Google Cloud Research Credits program with the award number
NH93G06K20KDXH9U.

ABSTRACT Serverless computing is a cloud computing paradigm that allows developers to focus
exclusively on business logic as cloud service providers manage resource management tasks. Serverless
applications based on this model are often composed of several fine-grained and ephemeral Function-as-a-
Service (FaaS) functions that implement complex business processes via mutual interaction and interaction
with Backend-as-a-Services (BaaS) such as databases. FaaS functions suffer from the cold start problem
because of the scale to zero instances feature. In this work, we use neural Temporal Point Processes (TPPs)
to model function invocations in FaaS compositions. A probability distribution over the time and class of
the following invocations for a given history of invocations is predicted using these probabilistic models.
The prediction can avoid cold starts by scaling functions in advance and reduce network load by optimizing
the function-server assignment. In this regard, we developed a python-based tool called TppFaaS on top
of OpenWhisk open-source serverless platform. TppFaaS uses the neural TPPs LogNormMix for modeling
the time using a log-normal mixture distribution and TruncNorm for predicting a single value for the time.
Furthermore, we built a custom trace data collector for OpenWhisk embedded into TppFaaS and created
datasets for multiple FaaS compositions to train and test our models. For datasets without cold starts, the
models achieved for most compositions a mean absolute error below 22ms and a percentage of correctly
predicted function classes above 94%.

INDEX TERMS cloud computing, faas, faas composition, function-as-a-service, modeling, serverless
computing, temporal point process

I. INTRODUCTION

W ITH the advent of Amazon Web Services (AWS)
Lambda in 2014, serverless computing has gained

popularity and more adoption in different application do-
mains such as machine learning [1], [2], linear algebra com-
putation [3], [4], and map/reduce-style jobs [5]. Furthermore,
nowadays, it is implemented by every major cloud provider
in services like Azure Functions [6] and Google Cloud
Functions [7]. Function-as-a-Service (FaaS), a key enabler
of serverless computing, allows a traditional application to
be decomposed into fine-grained, stateless, and ephemeral
functions running isolated in containers with a runtime on

a FaaS platform [8]. A FaaS platform is responsible for
providing resources, such as the containers, and auto-scaling
the functions on demand. Functions are triggered in an event-
based fashion, with various sources emitting the events.
These include cloud services such as databases or message
queues, as well as other FaaS functions of the application
emitting events for database or queue updates, as well as
HTTP requests [9]. Since FaaS offerings such as AWS
Lambda and Azure Functions are based on a pay-per-use
pricing policy, running an application on a FaaS platform can
therefore reduce costs [10].

A FaaS application is often constructed as a composition of

VOLUME 4, 2021 1

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

Frontend

Recommen-
dation Checkout Ads

Product
Catalog Shipping

Payment Cart

E-Mail

FIGURE 1. A webshop implemented as a composition of FaaS functions [12].

multiple functions that abstracts some business process [11].
An example of such a composition can be seen in Figure 1,
in which multiple FaaS functions implement a webshop [12].
In it, each function fulfills a simple modular logic, with the
interaction between functions enabling a complex program.
Orchestration tools such as AWS Step Functions [13], Azure
Durable Functions [14], or OpenWhisk’s Composer [15] fa-
cilitate building such compositions. These provide constructs
to compose the functions into a control flow, known from any
imperative programming language. That is, a developer can
arrange the functions sequentially, in parallel, or loops and in-
tegrate branching and conditional logic. In addition, the func-
tion orchestrator performs other important tasks such as state
management, i.e., storing the data communicated between
functions, error handling, real-time monitoring, logging, and
much more [16]. With all the described characteristics, the
migration to FaaS offers an attractive opportunity to break up
traditional monolithic applications into a composition of fine-
grained and reusable functions that scale independently and
automatically and can be arranged in a familiar imperative
manner.

Despite having many advantages, serverless computing
suffers from some pain points that obstruct its wide adop-
tion [17], [18]. We explain two of them in the following
subsections:

1) Cold start problem

It is mainly connected with loading the FaaS function into
the main memory of the executing server and preparing
the execution environment for the target code (starting up
the VM/container, loading libraries, loading function code,
etc. forming the initialization time in Figure 2) [19], [20].
Several influencing factors increase the initialization time
of a function [21], [22], one of which is the choice of
programming language. While languages such as JavaScript
use an interpreter, Java requires a more complex JVM to be
set up in the container, leading to higher latency. Also, the
size of the function image has a decisive influence on the
cold start latency.

time

function execution time

initialization time
code execution time

trigger event

FIGURE 2. A cold start delays the execution of the function code.

2) Data-Shipping Architecture
Also, critical in FaaS is the data-shipping architecture crit-
icized in [23]. In FaaS, functions are executed in containers
isolated from the data they need. In addition, the functions are
short-lived, so caching the state to serve multiple requests is
limited. Instead, the state is stored in databases that must be
queried regularly. Consequently, the data must be transported
over the network to the function’s location (shipping data to
code). However, shipping code to data would be much more
efficient. This anti-pattern in FaaS leads to higher latencies,
load on the network, and thus higher costs [23].

A Temporal Point Process (TPP) is a probability distri-
bution over sequences of instantaneous points in time, de-
noted as events, of variable length in an interval [0, T] [24].
Since FaaS follows an event-based execution model, we
can model the events triggering the functions using TPPs.
Therefore, TPPs are perfect for modeling invocations in FaaS
function compositions by representing an executed function
composition by a sequence of events. If we consider that a
composition can contain structures such as loops, branches,
and conditions, the length of the sequence is also variable.
Such modeling of FaaS function compositions and then a pre-
diction can avoid cold starts by scaling functions in advance
and reducing network load by optimizing the function-server
assignment. Furthermore, it can also help in optimizing the
data-function placement. In this regard, this work focuses on
modeling FaaS applications in the form of function composi-
tions using neural temporal point processes (TPPs). The key
contributions of this work are as follows:

• We present a python-based tool called TppFaaS1 on
top of OpenWhisk open-source serverless platform for
modeling Serverless Functions Invocations via Tem-
poral Point Processes. TppFaaS uses the neural TPPs
LogNormMix for modeling the time using a log-normal
mixture distribution and TruncNorm for predicting a
single value for the time.

• We constructed four FaaS compositions with TppFaaS
having different characteristics for evaluation of Tpp-
FaaS. In particular:

1) the constructed applications exhibit different struc-
tural characteristics (sequence, parallel, tree and
fanout).

1https://github.com/maSteinbach/TppFaaS

2 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

FIGURE 3. Openwhisk high-level workflow [28].

2) each of the applications is scaled in two variants:
small variant and large variant.

3) for each variant of the application, we implement a
randomized and a non-randomized variant. In the
non-randomized variant, the duration of the sleep
command for all functions is fixed with either
300, 400, or 500ms. In the randomized variant, the
duration is drawn from a gamma distribution for
each function invocation (§IV-A).

• We evaluate the prediction performance of LogNorm-
Mix and TruncNorm with multiple metrics using the
generated datasets without cold starts (§VI-A) and with
cold starts (§VI-B).

Paper Organization: Section II gives a high level work-
flow of the OpenWhisk FaaS platform used in this work. We
study the theory of TPPs and introduce basic models such
as the Hawkes process, and neural TPPs such as introduce
RMTPP and LogNormMix in Section III. Our methodol-
ogy and developed tool TppFaaS and its components are
described in Section IV. Section V describes the various
evaluation settings used in this work, training models hyper-
parameters, performance quality evaluation metrics and the
benchmark applications used in this work. In Section VI, our
evaluation results on the introduced performance quality met-
rics are presented. Section VII describes some prior works in
this domain. Finally, Section VIII concludes the paper and
presents an outlook.

II. FAAS PLATFORM - OPENWHISK
In this section, we present high level workflow of the Open-
Whisk FaaS platform used in this work. OpenWhisk [25]
is an open-source FaaS platform developed by IBM that is
built on Kubernetes, which provides containers for function
invocations. It is also the platform that leverages IBM’s
FaaS offering IBM Cloud Functions [26]. In OpenWhisk’s
terminology, a function is called action and an invocation is
called activation. Actions can be created using OpenWhisk’s
CLI, SDK, or UI and invoked using the same tools as well as
by event triggers [27].

The procedure of a FaaS function invocation in Open-
Whisk starts with an HTTP request entering the OpenWhisk

system (shown in Figure 3) through Ngnix [29], an HTTP
and reverse proxy server whose primary purpose here is pro-
viding the HTTPS protocol. The Ngnix server immediately
forwards the request to the controller, which is the system’s
central component and provides a REST API for creating
entities such as actions and for the invocation of them. Since
the forwarded request is a request for an invocation, the
controller performs authentication and authorization, i.e., it
checks whether the user of the request has the privilege to
invoke the desired action. To do this, the controller queries
the OpenWhisk database CouchDB, where all the users’
authorizations are stored. If the authorization was successful,
the controller fetches the actual function code from CouchDB
along with the default parameters of the action. The default
parameters are merged with the dynamic parameters attached
to the request. A load balancer integrated into the controller
has a global view of the availability of the Invokers and
selects one of them to execute the function code. The con-
troller communicates with the invokers via Kafka [30], a
distributed publish-subscribe messaging system. Therefore,
the controller publishes a message to Kafka addressed to the
selected invoker containing the action and its parameters.
Kafka ensures the persistence of the message even in case
of a system crash. It also buffers the message if the system
is under heavy load, in which case the message must wait
for other messages to be executed. After Kafka receives
the message, it returns the unique ActivationId to the user,
which can be used to retrieve the invocation’s result and
meta information from the OpenWhisk API. This immediate
termination of the HTTP request after Kafka receives the
message describes an asynchronous behavior. OpenWhisk
also provides a synchronous behavior where the client is
blocked until the invocation is finished. In this case, the
complete result of the invocation is returned, rather than just
the ActivationId. After the invoker has executed the action,
the result is written to CouchDB along with other meta
information and logs [28].

OpenWhisk records the invocation’s initTime and wait-
Time in the meta-information. The initTime is only present
in case of a cold start and describes the time required for
the function initialization. The waitTime describes the time
that elapsed from the receipt of the invocation request by the
controller to the provision of a container for execution by the
invoker. Therefore, the waitTime increases when the system
is under heavy load, and the message must wait in the Kafka
queue [27].

III. TEMPORAL POINT PROCESSES
A Temporal Point Process (TPP) is a probability distribution
over sequences of instantaneous points in time, denoted as
events, of variable length in an interval [0, T] [24]. These
events are discrete events in continuous time. Discrete means
that events can be categorized into classes, often referred to
as event type or mark in the literature [31]. A realization of a
marked TPP model can be represented as an event sequence
x = {(t1,m1), . . . , (tN ,mN)}, where 0 < t1 < · · · <

VOLUME 4, 2021 3

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

TABLE 1. Symbols and definitions used in this paper

Symbol Interpretation
x sequence of events
N number of events in the given event sequence x
t1, . . . , tN event’s occurrence times

m1, . . . ,mN
event types (or marks as referred in the literature)
at different times

τi inter event time (ti − ti−1)

H(t)
the history of past events for a given event se-
quence x

f∗
i (ti)

conditional probability density function for mod-
eling the event times of a TPP model

F ∗
i (ti)

cumulative distribution function for modeling the
event times of a TPP model

S∗
i (ti)

complementary cumulative distribution function
also known as survival function for modeling the
event times of a TPP model

λ∗(t)
conditional intensity function for modeling the
event times of a TPP model

ϕ∗
i (t) hazard function for characterizing a TPP model

µ
constant event rate in homogenous Poisson pro-
cess

κ(t)
kernel function in the Hawkes process for model-
ing the dependence on previous events

FIGURE 4. The conditional probability density function f∗
i (ti), the cumulative

distribution function F∗
i (ti), and the survival function S∗

i (ti) model the time
of the next event ti for a given event history H(ti) for a TPP model [32].

tN < T represents event’s time (see Table 1) with N being
the number of events and is itself a random variable, and
mi represents an event type or a mark. In most applications,
the marks (m1, . . . ,mN) are categorical, such that mi =
{1, . . . ,K}, although other representations are possible for
this. Furthermore, a TPP can also be represented by a list
of strictly positive inter-event times τi = ti − ti−1 ∈ R+,
where t0 = 0 and tN+1 = T . Both notations are equivalent
and can be replaced with each other as desired. Finally,
H(t) = {(tj ,mj)|tj < t} defines the history of past events
for a given event sequence x.

Each event time ti is a random variable, which is mod-
eled in an autoregressive fashion by the TPP model, i.e.,
conditioned on past events defined by the history H(ti) =
{t1, . . . , ti−1}. Modeling ti is equivalent to modeling the
inter-event time τi for a given H(ti) = H(ti−1 + τi). For the
sake of simplicity, in the following subsections we consider
an unmarked TPP such that x = {t1, . . . , tN}. The modeled
distribution of ti and τi, respectively, can be characterized
for a given H(ti) by one of the following three functions,
also illustrated in Figure 4:

• The conditional probability density function f∗
i (ti) =

fi(ti|H(ti)) determines the probability that the next
event for a given history H(ti) occurs in the interval
[ti, ti + dt). Similarly, the conditional density function
f∗
i (τi) = fi(τi|H(ti)) defines the probability, that the

time until the next event for a given history H(ti) is
within the interval [τi, τi + dτ).

• The cumulative distribution function F ∗
i (ti) =

Fi(ti|H(ti)) =
∫ ti
ti−1

f∗
i (u) du determines the probabil-

ity that the next event for a given history H(ti) occurs
before ti. Similarly, the cumulative distribution function
F ∗
i (τi) = Fi(τi|H(ti)) =

∫ τi
0

f∗
i (ti−1 + u) du is the

probability that the time to the next event for a given
history H(ti) is less than τi.

• The complementary cumulative distribution function
S∗
i (ti) = Si(ti|H(ti)) = 1 − F ∗

i (ti) =
∫∞
ti

f∗
i (u) du,

also known as survival function, defines the probability
that the next event for a given history H(ti) occurs after
ti. Similarly, the complementary cumulative distribution
function S∗

i (τi) = Si(τi|H(ti)) = 1 − F ∗
i (τi) =∫∞

τi
f∗
i (ti−1 + u) du is the probability that the time to

the next event for a given history H(ti) is greater than
τi [32] [24].

Any of the functions f∗
i , F ∗

i , and S∗
i can be used to model

the distribution of ti or τi. If one of the functions is known,
the other two can be derived from it [33]. There are many
other functions which can be used to model the distribution
of ti or τi, but a prominent one from the literature is the
conditional intensity function λ∗(t), which is often used in
the literature to describe TPP models.

Conditional intensity function λ∗(t) = λ(t|H(t)), another
way to model the event times of a TPP model, indicates
the probability of the next event occurring in the interval
[t, t + dt) conditioned on no event to have occurred in
[ti−1, t), where ti−1 is the time of the last event occurring
before t [32]. Formally, this means:

λ∗(t)dt = P(event in [t, t+ dt)|no event in [ti−1, t),H(t))

=
P(event in [t, t+ dt)& no event in [ti−1, t)|H(t))

P(no event in [ti−1, t)|H(t))

=
P(next event in [t, t+ dt)|H(t))

P(no event in [ti−1, t)|H(t))

=
f∗
i (t)dt

Si(t)
.

(1)

For a better interpretation of the conditional intensity func-
tion, we consider an alternative representation of the TPP
model in which it is defined as a counting process N(t),
counting the number of events up to time t. For an infinites-
imally time interval dt it holds that dN(t) = N(t + dt) −
N(t) ∈ {0, 1}, meaning that at most one event can occur in
[t, t+ dt) [32]. From this follows:

E[dN(t)|H(t)] = 1 ∗ P(next event in [t, t+ dt)|H(t))

+ 0 ∗ P(no event in [t, t+ dt)|H(t))

= λ∗(t)dt.

(2)

4 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

If the equation (2) is rearranged, the result is equation (3).

λ∗(t) = lim
dt→0

E[dN(t)|H(t)]

dt
, (3)

From equation (3), we derive that the conditional inten-
sity function specifies the expected number of events per
time unit [33], that is, the frequency rate per time unit,
i.e., λ∗(t) = events/second. The intuitive interpretation
facilitates the construction of TPP models with desired char-
acteristics by specifying the functional form of λ∗(t). When
choosing the functional form of λ∗(t), the only constraint
is that for any t and H(t), the two terms λ∗(t) ≥ 0 and∫∞
t

λ∗(u) du = ∞ must be satisfied. In contrast, the condi-
tional probability density function f∗

i (t) must be specified as
a valid probability distribution, such that

∫∞
ti−1

f∗
i (u) du = 1

is satisfied [32] [33].
If the conditional intensity function λ∗(t) is given, the

conditional probability density function f∗
i (t) can be derived

from it. From the definition of the survival function S∗
i (t) we

know that S∗
i (t) = 1− F ∗

i (t), thus

dS∗
i (t)

dt
=

d

dt
(1− F ∗

i (t))

⇐⇒ −dS∗
i (t)

dt
= f∗

i (t).

(4)

Plugging equation (4) into (1) then yields

λ∗(t) =
f∗
i (t)

S∗
i (t)

= − 1

S∗
i (t)

dS∗
i (t)

dt
= −d logS∗

i (t)

dt
. (5)

The integration of both sides of equation (5) leads to

logS∗
i (t) = −

∫ t

ti−1

λ∗(u) du

⇐⇒ S∗
i (t) = exp(−

∫ t

ti−1

λ∗(u) du).

(6)

The derived equation for the survival function from (6) is
plugged into (1), leading eventually to the formula for the
conditional probability density function [32]

f∗
i (t) = λ∗(t) exp(−

∫ t

ti−1

λ∗(u) du). (7)

Furthermore, we introduce the hazard function ϕ∗
i (t) =

ϕi(t|H(t)), another function to characterize a TPP and which
is related to the conditional intensity function λ∗(t) [24] [33].
While λ∗(t) describes the global intensity in the time interval
[0, T], the hazard function ϕ∗

i (t) is limited to the time interval
between two events (ti−1, ti], which is why the index i is
required. That is, for a sequence of N events, we obtain the
global intensity λ∗(t) by concatenating the hazard functions
ϕ∗
1, ϕ

∗
2, . . . , ϕ

∗
N+1, i.e.,

λ∗(t) =

ϕ∗
1(t) if 0 ≤ t ≤ t1

ϕ∗
2(t− t1) if t1 < t ≤ t2

. . .

ϕ∗
N+1(t− tN) if tN < t ≤ T

. (8)

FIGURE 5. The homogenous Poisson process is the simplest TPP and is
defined by a constant conditional intensity function [34].

FIGURE 6. The inhomogeneous Poisson process has a varying intensity
capable of reflecting global patterns [34].

A. BASIC TEMPORAL POINT PROCESSES MODELS
In this section, we describe about the basic Temporal Point
Processes (TPPs) models.

1) Homogeneous Poisson Process
The homogeneous Poisson process depicted in Figure 5 is the
simplest TPP model with a positive and constant event rate µ
whose event times are independent of the history H(t), i.e.

λ∗
µ(t) = µ ≥ 0.

The conditional probability density function f∗
i (t) of the

process can be derived using equation (7), so that

f∗
i (t) = λ∗(t) exp(−

∫ t

ti−1

λ∗(u) du)

= µ exp(−µ(t− ti−1))

⇐⇒ f∗
i (τ) = µ exp(−µτ).

(9)

From equation (9), it follows that the inter-event times τ
follow an exponential distribution with parameter µ. There-
fore, we can alternatively define a homogeneous Poisson
process as a sequence of N i.i.d. exponentially distributed
random variables, i.e. (τi)i∈{1,...,N} [32] [35].

2) Inhomogeneous Poisson Process
Another basic TPP is an inhomogeneous Poisson process
depicted in Figure 6, where the event rate varies as a function
of time. The conditional intensity function λ∗(t) is specified
by any function parameterized by θ, resulting in

λ∗
θ(t) = gθ(t) ≥ 0.

As with the homogeneous Poisson process, the event times
are independent of the history H(t) [32]. Therefore, these
TPP models (homogeneous and Inhomogeneous Poisson
Process) are suitable for modeling global trends such as
food orders in a restaurant where the event rate is spiked
around lunch and dinner time. We can model this pattern
by choosing an appropriate function gθ whose shape reflects
these trends [33].

VOLUME 4, 2021 5

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

FIGURE 7. The conditional intensity function of the Hawkes process
increases with each event that occurs and then slowly decays, resulting in a
temporally clustered distribution of events [34].

3) Hawkes Process
For both the homogeneous and inhomogeneous Poisson pro-
cesses, the event rate is independent of past events. However,
for many applications, the occurrence of an event increases
the probability of other events occurring immediately af-
terward. So-called self-exciting processes can simulate this
behavior by increasing the conditional intensity function
λ∗(t) for each event that occurs by a certain amount. The
most famous of these processes is the Hawkes process, whose
intensity is defined by

λ∗(t) = λ0(t) +
∑

ti∈H(t)

κ(t− ti),

where λ0(t) > 0 is the base intensity and κ(t) > 0
is the kernel function. The base intensity captures events
triggered by external sources and is thus independent of pre-
vious events. The kernel function models the dependence on
previous events and gives the Hawkes process its character-
istic self-excitation. The kernel computes for each past event
ti ∈ H(t) the quantitative influence on the intensity at time t.
To ensure that events further back in time have less influence
than recent events, a monotonically decreasing function is
usually chosen, such that the influence of a past event on
intensity decays with increasing temporal distance. The most
popular function for this is the exponential function, such that
the kernel function is defined by

κ(t) := α exp(−ωt),

where α ≥ 0, ω > 0 and α < ω applies [36] [35] [32].
The parameter α scales the self-exciting behavior of the
Hawkes process, eliminating it with α = 0. The parameter ω
affects how fast the influence of a past event on the intensity
at time t decays with growing temporal distance, with a high
value for ω leading to faster decay.

Figure 7 shows a realization and the corresponding in-
tensity function of a Hawkes process with constant base
intensity, i.e. λ∗

0(t) = µ, and exponential kernel function.
We can see that the intensity jumps with each event by the
amount α and decays exponentially with increasing time until
it returns to the value of the base intensity.

B. NEURAL TEMPORAL POINT PROCESSES MODELS
Neural TPP models autoregressively predict the time ti and
mark mi of the next event by conditioning the prediction
on the history of past events H(ti). In [24], the authors
partition the prediction process of neural TPP models (shown
in Figure 8) into the following three steps:

RNN RNN RNN...

...

...

FIGURE 8. In a neural TPP, the distribution over the next event
Pi(ti,mi|H(ti)) is parameterized with the RNN’s hidden state vector hi,
which encodes the event history H(ti) (therefore also called history
embedding) [24].

1) Each event (ti,mi) is mapped to a feature vector yi.
2) The history H(ti) is encoded by the history embedding

vector hi, which is computed by sequentially feeding
y1, . . . ,yi−1 into an RNN.

3) The conditional distribution over the next event
Pi(ti,mi|H(ti)) = P ∗

i (ti,mi) is parameterized by
hi, so Pi(ti,mi|H(ti)) = Pi(ti,mi|hi). P ∗

i can be
defined by f∗

i , F ∗
i , S∗

i or ϕ∗
i (see Table 1) [24].

While the first and second steps are similar for promi-
nent neural TPP implementations such as RMTPP [37], Ful-
lyNN [38], and LogNormMix [31], they differ significantly
in the third step. Therefore, in the following subsections, we
present the neural TPP models RMTPP [37] and LogNorm-
Mix [31] in more detail.

1) Recurrent Marked Temporal Point Processes (RMTPP)
The RMTPP model was the first TPP to encode event his-
tory by the hidden state hi of an RNN, thereby param-
eterizing the distribution over the next event P ∗

i (τi,mi),
i.e., Pi(τi,mi|hi). The model assumes conditional inde-
pendence between the mark and inter-event time, such that
Pi(τi,mi|hi) = Pi(τi|hi)Pi(mi|hi). The mark distribution
P ∗
i (mi) is defined as a categorical distribution. The time

distribution P ∗
i (τi) is characterized by the hazard function

ϕi(τi|hi) = exp(wτi + vThi + b), where the vector v
and the scalars b and w are learnable parameters and the
exp transformation guarantees the positivity constraint of
the hazard function [37]. By applying equation (7), we can
express ϕ∗

i (τi) as a conditional probability density function
f∗
i (τi), which in this case is a Gompertz distribution [31].

Because of the simplicity of the hazard function, the integral∫ τi
0

ϕ∗
i (u) du of the likelihood can be computed analytically.

Unfortunately, no closed-form formula exists for computing
the mean of the distribution, i.e., E [f∗

i (τi)]. Instead, an
integral must be solved numerically for its computation.
However, the model allows to draw samples analytically from
the distribution [37].

2) LogNormMix
As with RMTPP, the TPP LogNormMix [31] assumes con-
ditional independence between the mark and time such that
Pi(τi,mi|hi) = Pi(τi|hi)Pi(mi|hi). Similarly, the mark
distribution P ∗

i (mi) is defined as a categorical distribution.
The unique feature of LogNormMix is that it characterizes

6 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

Kubernetes

invocation meta-data

OpenWisk

FaaS Application

invocation spansOpenTelemetry post-processed spans
Trace Collector

trace data

requests

training data test data

Sampler

Training TPP Model Predictions

1

2

3

4

5

6 7

Zipkin

8

FIGURE 9. TppFaaS is a system for modeling FaaS applications using
temporal point processes. For this purpose, trace data is collected from an
artificial FaaS application that the user can easily create via configuration. The
trace data is then used to train a TPP that models the function invocations of
the FaaS application.

the distribution over τi with the conditional probability den-
sity function f∗

i (τi), whereas most other TPP models use the
intensity for this purpose. This offers the advantage that we
can specify f∗

i with any positive PDF, thereby automatically
satisfying the condition of a valid distribution. LogNormMix
uses a mixture model to specify f∗

i as they are well suited
for low-dimensional density estimations [39] and therefore in
particular for modeling the one-dimensional inter-event time
τi. As a mixture distribution defined in (0,∞), LogNormMix
uses a mixture of K log-normal distributions defined by

fi(τi|wi,µi, si) =

K∑
k=1

wik

τisik
√
2π

exp

(
− (log τi − µik)

2

2s2ik

)
(10)

The parameters of the mixture distribution are computed
using the hidden state hi of the RNN, i.e.

wi = Softmax(Vwhi + bw)

si = exp(Vshi + bs)

µi = Vµhi + bµ

(11)

where Vw, bw, Vs, bs, Vµ, and bµ are learnable parameters
and the softmax and exp transformations enforce the pa-
rameter constraints of the distribution. The model allows the
computation of the survival function S∗

i (T) of the likelihood
with a closed-form formula. The mean of the distribution,
i.e., E [f∗

i (τi)], can also be computed analytically by taking
the weighted mean of the component means. In addition, we
can also analytically draw samples from the distribution [31].

We can efficiently train both models due to their likelihood
in closed-form. However, the multimodal log-normal mixture
distribution of LogNormMix provides much higher flexibility
in modeling f∗

i (τi) than the unimodal Gompertz distribution
of RMTPP. Using a log-normal mixture distribution allows
us the approximation of any distribution [31].

IV. TPPFAAS - DEVELOPED SYSTEM
In this section, we introduce our developed system called
TppFaaS (see Figure 9), for modeling function invocations
in FaaS applications using temporal point processes (TPPs).
It is designed for applications running on OpenWhisk [25]
FaaS platform, which underneath uses Kubernetes cluster.
For modeling, trace data of application functions is collected
and is used for training TPP models. Based on these models,
predictions are carried out.

Additionally, for creating the dataset for training TPP mod-
els, we created a component within TppFaaS called Sampler.
The Sampler is an automated pipeline for creating simulated
FaaS applications by specifying configuration parameters.
Here, an application is a function composition in which sleep
commands simulate the execution times of the functions fol-
lowing a distribution. This simulated application is deployed
on the OpenWhisk FaaS platform. For generating the traces,
Sampler send user requests to the deployed application (Step
1 in Figure 9). The OpenWhisk executes the application.
The OpenTelemetry library [40] instruments the application’s
functions, and exports a span for each function invocation
to the post-processing service Trace Collector (Step 2). The
Trace Collector enriches the span with meta-information
retrieved from the OpenWhisk API (Step 3) and subsequently
exports it to Zipkin [41] (Step 4). Here, the spans are ag-
gregated into traces and then fetched by the Sampler, which
transforms the traces into a data format suitable for the TPP
models (Step 5). Once a trace dataset is generated, we split
it into a training and test dataset. We use the training data to
optimize the parameters of the TPP model (Steps 6-7), which
we then evaluate using the test data (Step 8).

In the following subsections, we first describe how the
simulation of FaaS applications is carried out (§IV-A), and
then describe each component of TppFaaS in more detail.

A. SIMULATION OF FAAS APPLICATIONS

1) FaaS Applications Function’s Duration Simulation

A FaaS application is a composition of multiple functions.
To simplify the construction of different compositions, each
function is simulated by a sleep command whose duration
is drawn from a probability distribution for each function
invocation. This approach was also followed in [11], in which
a composition was built that consisted of a sequence of
16 functions. The execution duration of each function was
drawn from an exponential distribution, where each function
had an individual parameterization of the distribution. The
parameters were chosen so that the distribution of the first
function had an expected value of 500ms and was increased
by 50ms for each subsequent even position and decreased
by 50ms for each subsequent odd position. The expected
values of the sequence were thus 500, 550, 450, 600, 400, . . . ,
150, 900ms. The function duration in this work is simulated
using a gamma distribution, since this distribution is the
generalization of the exponential distribution and thus offers
us higher flexibility with its two parameters α and β. For

VOLUME 4, 2021 7

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

FIGURE 10. Effects of α and β on the Gamma distribution.

α > 0, β > 0 and x ∈ (0,∞) the probability density
function of the gamma distribution is defined as

f(x) =
βα

Γ(α)
xα−1e−βx

The exponential distribution is a special case of the gamma
distribution at α = 1 and Γ(1) = 1. To better understand
the effect of α and β, the gamma distribution is visual-
ized in Figure 10 for different parameterization. In the top
figure, α varies while β remains fixed, and we note that,
the lower the α, the more right-skewed the distribution
becomes. That is, the density mass shifts to the left and
gets a long flat sloping tail on the right side. Thus, if the
function duration is simulated with a strong right-skewed
gamma distribution, this leads increasingly to high outlier
values, which negatively affect the later evaluation of the TPP
model with respect to the mean absolute error (MAE). In
general, the more concentrated the distribution of function
durations is, the more accurately the duration until the next
function invocation τi (see Table 1) can be predicted. This
is because τi depends on the execution time of the previous
function. That is, if the distribution of the function duration
of the previous function is very flat, this will lead to an
equally flat distribution for fi,true(τi), the true distribution for
the duration until the next function invocation. If the TPP
model is evaluated using the absolute mean error between
the expected value of the modeled f∗

i (τi) (see Table 1) and
the true duration until the next function invocation τi, the
more spread out realizations of fi,true(τi) result in a larger
error. This highlights the dilemma between parameterization
of the functions and the success of the findings. However,
if the model is evaluated using the negative log-likelihood,
i.e., how similar the modeled distribution f∗

i (τi) is to the true
distribution fi,true(τi), this problem does not apply because
the TPP can also model a flat distribution due to its flexibility.

In the lower figure of Figure 10, we can observe the effect
of the parameter β on the distribution. We can see that a

TABLE 2. Effects of α and β on the entropy of the Gamma distribution.

α 1 2 5 10 10 10 10
β 1 1 1 1 2 5 10

Entropy 1.00 1.58 2.15 2.54 1.84 0.93 0.23

FIGURE 11. Exponential distributions based on [11] for the simulation of the
function duration having mean between 500ms and 900ms.

lower β causes a shift of the density mass to the right, but
the skewness remains constant. Moreover, the distribution
becomes flatter and spreads out more. For the predictive
ability of the TPP model, this leads to the same issue as
described previously.

We can measure the concentration of the distribution’s
mass using the distribution’s entropy [42]. The higher the en-
tropy, the more uncertain is the value of a possible realization
of the distribution. That is, flat and widespread distributions
have higher entropy than spiky distributions. We see the
influence of the parameters α and β on the entropy of the
gamma distribution in Table2. If α increases and β remains
fixed, the entropy increases. This observation also aligns with
the graphs in Figure 10, in which the distributions flatten
for a higher α. In the opposite case, α remains fixed and β
increases, the entropy decreases and the distributions become
more peaked. In conclusion, we can assume that using low
entropy distributions for simulating the function duration will
reduce the MAE.

Figure 11 shows the exponential distributions used in [11]
for the simulation of the function duration, as well as their
entropies. Among all continuous distributions defined in
[0,∞), the exponential distribution for a given expected
value has the highest entropy [43]. For this reason, we will
not use this distribution for modeling the function duration.
Instead, we will rely on gamma distributions as in Figure 12,
whose parameterization result in lower entropies than in the
case of the exponential distribution. In [11], high entropies
are not an issue because their mechanism for reducing cold
starts is not based on predicting function invocations using
probabilistic models. Moreover, in our work, high entropies
are only problematic when the TPP is evaluated using the
MAE. In contrast, it should not be a problem for the TPP to
model the distribution of the duration until the next function
invocation f∗

i (τi) such that it resembles the true distribution
fi,true(τi).

In the topmost figure in Figure 12, all distributions have

8 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

FIGURE 12. Gamma distributions with mean fixed at 300, 400 or 500ms. It
can be seen that the distribution deforms to a normal distribution and the
entropy decreases.

an expected value of 300ms. For an increasing α and β, the
distribution becomes more symmetric and peaked, while at
the same time, the entropy decreases. For a high α and β, the
distribution resembles a normal distribution. Analogously,
we can see this in the below figures, where the distributions
have an expected value of 400ms and 500ms, respectively.
We will simulate the functions of the FaaS applications used
in this work with gamma distributions with expected values
of 300ms, 400ms, and 500ms. Higher expected values again
lead to higher entropies and are therefore not used in this
work.

Besides the gamma distribution, the log-normal distribu-
tion, also defined in (0,∞), would be another candidate for
modeling the function duration. As mentioned above, the
duration until the next function invocation τi depends on the
function duration of the previous function. For example, if
we consider a FaaS application in which the functions are
invoked sequentially one after another, and if we also neglect
the overhead of OpenWhisk, then the end of a function exe-
cution also signifies the start of the following function. This
would result in fi,true(τi) being equal to the distribution of the
function duration of the previous function. Thus, the TPP that
attempts to model fi,true(τi) indirectly models the distribution
of the function duration of the previous function. If the func-
tion duration is simulated by a log-normal distribution, then
it would be too easy for our TPP to model fi,true(τi), since
it also uses a log-normal mixture distribution for modeling
(see §III-B2). However, is this work, we also showcase the
flexibility of the log-normal mixture distribution. With this,
it should be possible to model any distribution, such as a

gamma distribution.

2) Function Composition
We implement the FaaS applications to generate trace data
using JavaScript functions that we instrument with the Open-
Telemetry library [40]. This library provides tools for gener-
ating and modifying spans by code and the ability to post-
process the generated spans and export them to multiple
destinations. An application is constructed as a composition
of n+1 functions, where the function main is the entry point
of the composition and invokes one or more subsequent func-
tions. We denote the remaining functions of the composition
with f1, . . . , fi, . . . , fn. A function can invoke one or more
successor functions, allowing the construction of simple or
complex compositions such as sequences or trees. A span
represents the duration of a function execution, making a
trace a representation of all the function executions in the
composition. A composition is finished after all branches of
the composition have been executed. All function invocations
are made asynchronously, meaning that a function does not
wait for the completed execution of the invoked following
functions. Instead, it is terminated upon invocation of the
following functions. As discussed in §IV-A, the logic of the
functions f1, . . . , fi, . . . , fn consists only of a sleep com-
mand whose duration is drawn from a gamma distribution.
This simple logic enables the functions to share the same
function code.

It is to be noted that, we can find conditional function
invocations in real-life applications expressed with an if-else
syntax. For example, a condition evaluated in function f1 can
decide whether we invoke function f2 or function f3 next.
For the sake of simplicity, we do not include such conditional
function invocations in this work. To cover conditional func-
tion invocations, the input parameters to the function would
be required as another feature for modeling.

We create compositions using the generic functions and
are individualized by different parameterizations. Using the
serverless framework [44] we can simplify the parameteri-
zation as well as the lifecycle management of the compo-
sition. We configure the functions and their parameters in
a YAML file named serverless.yaml. We show an example
of such a configuration in Listing 1, with a composition
consisting of five functions: main, f1, f2, f3, and f4. The
handler attribute (in line 8 or 15) specifies the function code.
Here, we reference the generic and configurable JavaScript
implementations, main and f. The two implementations re-
ceive different parameters specified under the parameters
attribute. These parameters are passed to the function as
default parameters via the params parameter object upon
invocation. For the main function, the specification of the
address and authentication of OpenWhisk is required (in
line 10 and 11). These parameters are needed to initialize the
OpenWhisk client, which invokes the successor function. The
f functions also use this client, but get the required parameters
propagated from the main function via params. Analogously,
the collectorHost parameter (in line 12) is propagated to the

VOLUME 4, 2021 9

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

owspanprocessor modified span
activationId, waitTime, initTime

spanStart = start - waitTime spanEnd = end

original span
activationId

FIGURE 13. The owspanprocessor adapts start and endpoint of the original
span and adds further attributes.

f functions. This parameter specifies the address of the Trace
Collector to which we export the spans for post-processing.
The main and f functions share the nextFn parameter. This
parameter specifies the successor functions that the Open-
Whisk client invokes after the function execution finishes.
If we specify multiple functions here as in line 19, the
client invokes these functions in parallel. The specification of
multiple functions enables the construction of compositions
with a tree-like function hierarchy, as is the case in Listing 1.
The function f, whose function duration is simulated with
a gamma distribution, is additionally configured with the
parameters of the distribution, alpha and beta. In summary,
the approach shown provides an easy way to create diverse
compositions.

Listing 1. Example Configuration file for creating a variety of compositions.
1 service: tree
2 provider:
3 name: openwhisk
4 functions:
5 main:
6 handler: funcs.main
7 parameters:
8 owHost: ...
9 owAuth: ...

10 collectorHost: ...
11 nextFn: f1
12 f1:
13 handler: funcs.f
14 parameters:
15 alpha: 30
16 beta: 0.075
17 nextFn: [f2, f3]
18 f2:
19 handler: funcs.f
20 parameters:
21 alpha: 30
22 beta: 0.06
23 f3:
24 handler: funcs.f
25 parameters:
26 alpha: 30
27 beta: 0.075
28 nextFn: f4
29 f4:
30 handler: funcs.f
31 parameters:
32 alpha: 30
33 beta: 0.06

B. TRACE COLLECTOR
We used the OpenTelemetry Collector Library [45] to im-
plement a custom collector2 that post-processes the spans
produced by the instrumented FaaS application. We configure

2https://github.com/maSteinbach/owtracecollector.git

owspanattachermodified span
activationId, waitTime, initTime

modified span with attachments
activationId, waitTime, initTime

waitTime

initTime

executionTime

FIGURE 14. The owspanattacher adds child spans for waitTime, initTime, and
executionTime.

the components of the collector within the YAML file. The
collector consists of one receiver, three processors, and one
exporter.

The spans produced by the instrumented FaaS application
are received over HTTP by the pre-implemented OLTP
Receiver [46], and forwards them to the first processor in
the pipeline, the batch processor. The Batch Processor [47]
aggregates the data to minimize later outgoing connections
from the exporter. It is configured with the parameters
send_batch_size and timeout. The former specifies the max-
imum batch size. The parameter timeout specifies the time
after the batch is forwarded to the pipeline’s next step, regard-
less of its size. The next processor in the pipeline, the ows-
panprocessor, receives the aggregated spans. This processor
is developed by us using the OpenTelemetry collector library
and is configured with the host address of OpenWhisk. The
processor extracts the span’s activationId attribute to retrieve
meta-information about the span’s associated function invo-
cation from the OpenWhisk API. The attributes extracted
by the owspanprocessor measured in milliseconds are: start,
end, waitTime, and initTime.

• The start attribute is a Unix timestamp and is computed
by start := executionStart − initT ime, where exe-
cutionStart is a Unix timestamp specifying the start time
of the function code execution. That is, start already
specifies the start of function initialization for a cold
function invocation. This is unfortunately not evident
from the OpenWhisk documentation, but can be derived
from the source code [48] of OpenWhisk.

• The end attribute is a Unix timestamp and specifies the
end of function execution.

• The initTime attribute specifies the duration of function
initialization which applies only to cold function invo-
cations, making the attribute optional.

• The waitTime attribute specifies the OpenWhisk caused
delay occurring before the function initialization/execu-
tion [27].

As illustrated in Figure 13, the processor uses the extracted
attributes to adjust the start and end time of the span. On the
one hand, waitTime and initTime should be included in the
duration of the span. On the other hand, the start and end
time of the received span does not match the true start and
end time of the function invocation and should be adjusted
with start and end. Thus, the processor modifies the start and
end time of the span as follows:

10 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

spanStart := start− waitT ime

spanEnd := end
(12)

Additionally, the waitTime and initTime are added to the
modified span as attributes. In the pipeline’s next step, the
owspanattacher processor receives the spans. As shown in
Figure 14, the processor creates a child span for each of the
waitTime and initTime attributes, as well as a child span ex-
ecutionTime that represents the function code execution. The
start time of the child span executionTime is computed with
executionStart = start + initT ime. The child spans are
not required for the later modeling and serve an exclusively
visual purpose. Therefore, this processor is optional and can
be removed from the pipeline if desired.

In the pipeline’s last step, the spans are exported to Zipkin,
a backend service that receives, validates, indexes, and stores
them aggregated into traces [49]. For exporting, we specify a
Zipkin Exporter with the address of Zipkin in the collector
configuration. The exporter transforms the spans into the
Zipkin data format and sends them to the given address. We
can use Cassandra as a backend database for Zipkin.

C. SAMPLER
The Sampler is an automated end-to-end pipeline that con-
tains all the necessary steps for trace datasets generation
used to train and evaluate TPP models, such as deploying
the application, sending requests and collection of data. The
Sampler creates the datasets by sending n requests to the
FaaS application’s main function at irregular time intervals.
The main function represents the entry point of the appli-
cation. The time intervals between requests are drawn from
a continuous uniform distribution with an interval specified
by the user, who thus determines the load on OpenWhisk
and, indirectly, the number of cold starts. Another feature
of the Sampler is performing requests in batches, pausing
requesting after each batch for a user-specified duration. The
result is a dataset consisting of n traces whose format is
compatible with training a TPP model.

The first step of the pipeline validates the user-input argu-
ments, such as that the interval of the uniform distribution
is in the positive range. Next, it verifies that Node.js and the
Serverless Framework CLI are available. Using Node.js, the
pipeline installs the FaaS application’s dependencies, such as
the OpenTelemetry library. In the next step, the application
is deployed using the Serverless CLI, where the OpenWhisk
credentials are read from a configuration file and provided to
the CLI as environment variables. After deploying the appli-
cation, the sampler sends n requests to the FaaS application’s
main function at irregular time intervals, whose durations are
drawn from a uniform distribution each time. For each re-
quest, OpenWhisk returns the unique activationId of the main
function invocation, which is collected in the unfetched_ids
array. Once the sampler has sent all n requests, it may take
some time to execute all function invocations, depending on

main

waitTime

f1

waitTime

f2

initTime
executionTime

executionTime

FIGURE 15. The spans of the invoked functions f1 and f2 are mapped to the
3-tuple events e1 and e2, which carry the inter-event time τi, the function
class mi, and the cold start feature ci. Given the cold invocation of f1, we
have c1 = 1.

OpenWhisk’s load. With the activationIds returned by Open-
Whisk, we can reference any span associated with a main
function invocation of the generated n traces. The Zipkin API
provide the ability to filter traces by a single span attribute.
Thus, iterating over the activationIds of the unfetched_ids
array and setting the ID as a filter criterion, we fetch each
trace of the n requests from the Zipkin API. For each fetched
trace that is complete, the respective activationId is removed
from the unfetched_ids array. If the trace is incomplete, we
keep the ID in the array so that the trace can be retrieved
again in the next loop. The iteration stops if either the array
unfetched_ids is empty or the number of IDs in the array
stagnates after several iterations. The latter happens upon
runtime errors of OpenWhisk so that some traces are never
completed. Zipkin returns the traces as JSON, from which
the sampler extracts the necessary information and converts
it to a format compatible with the TPP model.

In order to convert the extracted spans into the TPP model
format compatible, we first decompose the span of a function
invocation into the three time ranges waitTime, initTime (for a
cold start), and executionTime (see §IV-B). We map the span
to an instantaneous point in time, denoted as an event in the
context of TPPs. For the next invocation, we want to predict
the time at which its request arrived at the FaaS platform. The
FaaS platform could use the predicted time to upscale the
function upfront, allowing it to begin its execution without
delay. In reality, however, a cold start or platform-specific
issues, such as the creation of a Docker container, might
delay the function execution, which OpenWhisk captures
through the waitTime and initTime. So, to predict the time
when the request for the next function invocation arrives at
the FaaS platform, we need to subtract these delays from the
actual start of the function. Let wi be the waitTime, ii be the
initTime, and xi be the start time of the function execution of
the ith invocation, then we define ti = xi − wi − ii as the
mapping of the span to an instantaneous point in time. The
mapping is visualized in the example in Figure 15, where
the functions main, f1, and f2 are invoked sequentially, with a
cold start occurring on f1. We represent the event of the ith in-
vocation, which we denote by ei, as either the 2-tuple (τi,mi)
or 3-tuple (τi,mi, ci). The attribute τi = ti − ti−1 ∈ R+

describes the inter-event time from §III. We use mi ∈ N0,
denoted as a mark in §III, to specify the class of the invoked

VOLUME 4, 2021 11

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

function. The binary attribute ci ∈ {0, 1} is an optional
feature intended to enhance the predictive ability of the TPP
model, indicating whether the ith function invocation was a
cold start. We compute the feature with ci = wi > 0.

In the final steps of the pipeline, the sampler saves the
formatted trace dataset as a pickle and shuts down the ap-
plication.

D. TPP MODELS
In this section, we briefly describe the TPP models and their
purposes within TppFaaS for modeling functions invoca-
tions.

1) LogNormMix: τi as a Log-Normal Mixture Distribution
We use the TPP model LogNormMix (§III-B2) to model the
duration until the next function invocation with the condi-
tional probability distribution f∗

i (τi), where f∗
i is defined

as a log-normal mixture distribution. For this, we compute
the duration until the next function invocation, i.e., the inter-
event time τi, from the time points of the function invocations
ti. Since the inter-event times may take high values, they are
logarithmized and centered. The inter-event time is combined
with the function class attribute mi and the optional cold
start feature ci to yield the 3-tuple event ei = (τi,mi, ci),
which represents the function invocation and is input to the
RNN. We represent each function class by a trainable 32-
dimensional embedding vector. The vectors are concatenated
into an embedding matrix indexed by mi. Analogously, we
represent the two values of the cold start feature, ci each,
by a trainable 32-dimensional embedding vector. The RNN
ingests the event ei and produces a hidden state vector hi ∈
R64 that encodes the history of past invocations. An affine
transformation and subsequent softmax operation maps the
vector hi to the parameters of the log-normal mixture distri-
bution. The softmax operation forces the component weights
of the mixture distribution to sum to 1.

2) TruncNorm: τi as a Single Value
Instead of an entire probability distribution f∗

i (τi), a single
value for the inter-event time τi is sufficient for some ap-
plications. For example, if the FaaS platform must initialize
the function in advance to avoid a cold start, only the single
value τi is required. Thus, we need a point estimate of f∗

i (τi)
that maps the distribution to a single value. There are two
methods to obtain this point estimate. First, as in §IV-D1,
we can model f∗

i (τi) with LogNormMix, which provides us
with a log-normal mixture distribution for it. The expected
value of this mixture distribution, i.e. E [f∗

i (τi)], can be
computed analytically and quickly, representing the desired
point estimate of f∗

i (τi). In the second method, we map
the hidden state vector hi of the RNN to a positive real
number representing the inter-event time τi using an affine
transformation and subsequent softplus operation. Instead of
softplus, we can use any other operation that enforces τi > 0,
such as the logarithm. We may also interpret this method as
a TPP that models the conditional probability distribution

f∗
i (τi) with a truncated normal distribution with constant

variance [50]. The normal distribution is "truncated" as it is
not defined in R as usual, but only in R+. The single value
for τi, obtained by the affine transformation of hi and the
softplus operation, is the expected value of this distribution.
In this work, we selected the second method (which we
refer to as TruncNorm) since, for a simple point estimate,
the high flexibility of the log-normal mixture distribution
is unnecessary for modeling f∗

i . Moreover, we experienced
more stable training with TruncNorm and a faster decrease
of the loss function, i.e., the mean absolute error.

3) Mark Modeled with a Categorical Distribution
We assume that the mark or function type mi and the inter-
event time τi of the ith function invocation are independent.
We define the distribution over mi as the categorical distri-
bution f∗

i (mi) = fi(mi|H(ti)) parameterized by the vector
πi. The value πi,c describes the probability that mi is of
class c. We obtain f∗

i (mi) by an affine transformation of the
hidden state vector hi produced by the RNN and a subsequent
softmax operation.

V. EVALUATION SETTINGS
This section describes the various evaluation settings used in
this work. First, we describe the benchmark applications used
in §V-A. Then we present the infrastructure settings on which
the evaluation is conducted in §V-B. Furthermore, we explain
the various datasets generated for evaluation in §V-C, and
training models hyperparameters in §V-D. Lastly, in §V-E,
we define the performance quality evaluation metrics used in
this work for evaluation of the results.

A. BENCHMARK APPLICATIONS
To generate trace datasets, we construct several instrumented
FaaS applications using the method described in §IV-A2.
That is, the applications are a composition of several artificial
functions whose execution time is simulated by a sleep
command. We configure the application in the YAML file of
the Serverless Framework. With it, we specify the call graph,
i.e., the structure of the composition that dictates in which
order the functions invoke each other. In addition, we use
the configuration to specify the duration of the sleep com-
mands of the individual functions. By adjusting these two
hyperparameters, the structure of the composition, and the
distribution of the function duration, we build applications
with unique characteristics that complicate the modeling of
the function invocations for the TPP model. In particular,
1) the constructed applications exhibit different structural
characteristics (sequence, parallel, tree and fanout), 2) each
of the applications are scaled in two variants: small variant
and large variant, and 3) for each variant of the application,
we implement a randomized and a non-randomized variant.
In the non-randomized variant, the duration of the sleep com-
mand for all functions is fixed with either 300, 400, or 500ms.
In the randomized variant, the duration is drawn from a
gamma distribution for each function invocation (see §IV-A).

12 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

TABLE 3. To simulate the functions, three gamma distributions with mean
values of 300, 400 and 500ms are used for the randomized FaaS applications.
The respective values of the parameters for α and β of the gamma distribution
are listed in this table.

mean 300ms 400ms 500ms
α 30 30 30
β 0.1 0.075 0.06

FIGURE 16. The application sequence is a sequential composition of 11
functions invoked one after another.

During configuration, we, therefore, assign each function one
of three gamma distributions with expected values of either
300, 400, or 500ms. The associated parameters α and β of
these distributions are listed in Table 3 and the associated
distributions are shown in Figure 12.

In the rest of the paper, we label the randomized ap-
plications with the substring rand in the application name.
However, we do not distinguish between randomized and
non-randomized applications in the following figures of the
section. Therefore, when we refer to the duration of the sleep
command in the following, we also mean the expected value
of the gamma distribution. In the following subsections, we
present the four constructed FaaS applications: sequence,
parallel, tree and fanout. For each of these applications,
except for sequence, four variants exist. These include the
two variants for scaling the structural characteristic, i.e.,
small and large, as well as a randomized and non-randomized
variant for each. The application sequence exists only in
the versions sequence and sequence_rand, since scaling the
simple structure does not provide any added value. All ap-
plications consist of exactly one main function and multiple
f#. We study the applications with respect to the following
aspects: the structural characteristic, what challenges do this
pose for the TPP model, how is the structural characteristic
scaled, and how are the sleep commands of the functions
configured.

1) Sequence application
The sequence application shown in Figure 16 is the simplest
of the four applications. Its structure consists of 11 functions
that are invoked one after another. Due to the simplicity of
the structure, scaling of the sequence is not required. If the
TPP can model a sequence of 10 functions, it should also be
possible for 20 and more. Furthermore, there are no parallel
function executions in the structure. Therefore, the function
invocations mapped to the time axis always have the same
order. Thus, it should be straightforward for the model to
predict the class of the next invocation. The sleep commands

FIGURE 17. The application parallel_large consists of four function branches
that are executed in parallel.

FIGURE 18. A potential time sequence of the function calls of the application
parallel_large. The next function call f31 depends on the call of f21, but
between f21 and f31 the other function calls of f22, f23 and f24 occur. This
means, in order to model the call of f31, the model must be able to store the
information of f21’s call across multiple function invocations. This is
challenging for RNN-based models.

are configured with the cyclically increasing sequence of 300,
400, and 500ms. However, except for the sleep command of
the last function f10, which has a duration of 0ms. Since
no functions follow here, a simulated function duration is
unnecessary, and we omit it in favor of resource optimization.

2) Parallel application
Figure 17 shows the large variant of the parallel application,
i.e. parallel_large. The structural characteristic here is the
parallel execution of four function branches. If we map the
function invocations to the time axis, their order may differ
for different traces. For example, a cool start for one function
may delay the executions of the successor functions of the
affected function branch, which would eventually affect the
order of the invocations of the entire composition. Smaller
deviations in the function duration, which we simulate with
the randomization of the application, might also cause this
effect. Uncertainty in the invocation order is a challenge
for the TPP model. We illustrate another challenge caused
by parallel function execution using Figure 18. This figure
shows a possible sequence of invocations of parallel_large
mapped to the time axis. Here, invocations from different
function branches are colored differently. In the scenario
shown, the functions from main to f22 have already been
invoked, and the next function invocation, here f31, should
be modeled. As illustrated in Figure 17, f31 is a successor
function to f21, so f31 is invoked as soon as f21 finishes

VOLUME 4, 2021 13

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

FIGURE 19. The application tree_large is a tree-shaped function composition
with a height of three.

execution. However, we see in the figure that the invocation
of f21 is relatively far in the past, and in the meantime,
the functions f23, f24, and f22 have been invoked. Thus,
the TPP model must memorize the invocation of f21 over
multiple invocations to model the long-time dependency.
This "looking far into the past" challenges TPP models based
on an RNN architecture [51].

We scale the structure of the parallel application by the
number of parallel function branches. While parallel_large
has four of them with a total of 21 functions, parallel_small
has two with a total of 11 functions. The sleep commands
are configured to distribute the invocations of the different
branches evenly over time. As with the sequence application,
the last functions of the composition have a simulated func-
tion duration of 0ms for resource optimization reasons.

3) Tree application
Figure 19 shows the large variant of the tree application,
i.e. tree_large, whose structure is a tree of height three.
Except for the main function, each function invokes two
successor functions in parallel. That is, the number of func-
tions executed in parallel doubles with each lower level of
the tree, giving us 12 parallel function executions at the
deepest level. With this high number of parallel executions,
the temporal order of the function invocations is particularly
uncertain. Moreover, the invocations for deeper levels occur
at increasingly shorter time intervals. We scale the structure
by the height of the tree. While tree_large has a tree height
of three with a total of 22 functions, tree_small has a tree
height of two with a total of 10 functions. An advantage
is that relatively many functions of the application do not
have a successor function; thus, we can specify their sleep
commands with 0ms.

4) Fanout application
Figure 20 shows the large variant of the application fanout,
i.e. fanout_large. Characteristic for the structure are the two
highly parallel function executions at functions f1 and f3.
However, the functions are not invoked exactly simultane-
ously. Instead, f1 invokes the functions from f21 to f29
sequentially, with a time gap of about 20ms. Nevertheless,
many invocations occur with short time intervals, which
might be challenging for the TPP. Moreover, the FaaS plat-

FIGURE 20. The distinctive feature of the application fanout_large are the
functions f1 and f3 with nine subsequent functions each.

form may not follow the invocation order of functions f21
to f29 defined by us. We scale the structure by changing
the degree of parallelism of functions f1 and f3. While in
fanout_large, functions f1 and f3 each have nine subsequent
functions, in fanout_small they each have five. Thus, the
total number of functions is 21 for fanout_large and 13
for fanout_small. As with tree application, a relatively large
number of functions have no successor and, therefore, a
simulated execution time of 0ms.

B. INFRASTRUCTURE SETTINGS
Generating trace data with cold starts imposes high de-
mands on the infrastructure. To meet these, we host the
performance-critical components of the system architec-
ture, i.e., OpenWhisk, the Trace Collector, and Zipkin, on
Google’s Kubernetes Engine3. Our Kubernetes cluster con-
sists of nine nodes, each with 32 GiB of memory and a CPU
(Intel Skylake architecture) with nine virtual cores. So, in
total, we have 72 CPU virtual cores and 288 GiB of memory
at our disposal. The sampler service requires only a few
resources and runs on a separate VM with two virtual cores.

We train our TPP models on a single-node cluster with
754 GiB of memory and two Intel Cascade Lake processors
(Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz) with 22
cores each.

C. DATASET GENERATION
We generate datasets with 1000 traces each for all variants
of the four applications sequence, parallel, tree, and fanout
described in §V-A. The parallel, tree, and fanout applications
each exist in a small and large variant, identified by the
substring small and large, respectively, in the application
name. In addition, each small and large variant and sequence
exist in a randomized and non-randomized variant. For each
of these variants, we generate a dataset with and without cold
starts. In the former, the cold invocations account for exactly
30% of the total invocations. To generate such a dataset, we
create 400 traces with almost exclusively cold invocations
and 1000 traces with almost exclusively warm invocations.

3https://cloud.google.com/kubernetes-engine

14 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

1 2 3 4 5 6 7 8 9 10
0

500

m
s

sequence

1 2 3 4 5 6 7 8 9 10
0

250

m
s

parallel small

1 2 3 4 5 6 7 8 9
0

250

m
s

tree small

1 2 3 4 5 6 7 8 9 10 11 12
0

500

m
s

fanout small

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

250

m
s

parallel large

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

250

m
s

tree large

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

i

0

500

m
s

fanout large

Distribution of inter-event time τi (no cold starts)

FIGURE 21. Distribution of the inter-event time τi for i ∈ {1, . . . , N − 1} in
the generated datasets without cold starts, where N is the number of
functions of the FaaS composition.

We then incrementally substitute the warm traces with cold
traces until the 30% of cold invocations is reached. We
generate the datasets using the Sampler from §IV-C, which
sends requests to a given application. The duration between
requests is drawn each time from a continuous uniform distri-
bution whose interval bounds are specified by the parameters
l (lower bound) and u (upper bound). Thus, the specification
of the interval influences the request rate and thus the load
on OpenWhisk. A higher request rate increases the load on
OpenWhisk, which responds by scaling up the functions,
causing cold starts. These interval limits are accordingly to
generate datasets with or without cold starts.

For the datasets without cold starts, the choice of l and
u is simple. Here, we just need to ensure that the request
rate specified by l and u does not exceed the capacity of
OpenWhisk. The maximum request rate depends on the
nature of the FaaS application. Therefore, we choose a higher
rate for the small application variants, consisting of fewer
functions, than for the large ones with more functions. If
the request rate is below capacity, OpenWhisk can prevent
requests from queuing by scaling the functions to adapt to
the load. OpenWhisk performs the scaling relatively fast, so
that the proportion of cold starts of the total invocations is
negligible, with less than one percent.

Generating datasets with almost exclusively cold starts is
more challenging because we have to choose the request

1 2 3 4 5 6 7 8 9 10
0

500

m
s

sequence rand

1 2 3 4 5 6 7 8 9 10
0

500

m
s

parallel small rand

1 2 3 4 5 6 7 8 9
0

250

m
s

tree small rand

1 2 3 4 5 6 7 8 9 10 11 12
0

500

m
s

fanout small rand

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

250m
s

parallel large rand

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

250

m
s

tree large rand

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

i

0

500

m
s

fanout large rand

Distribution of inter-event time τi (no cold starts)

FIGURE 22. Distribution of the inter-event time τi for i ∈ {1, . . . , N − 1} in
the generated random variant datasets without cold starts, where N is the
number of functions of the FaaS composition.

rate with l and u so that OpenWhisk scales the functions.
If the sampler sends requests at a constant rate to a FaaS
application, OpenWhisk starts scaling up the functions until
it can serve each future request with a warm function instance
without delay. As a result, even with a high request rate,
cold starts only occur at the beginning, until OpenWhisk has
adapted to the load. To avoid it, we set the request rate high
enough that OpenWhisk cannot adapt to the load over the
entire request period, and therefore also scale the functions
over this period. However, we reach the limit of our hardware
resources after a certain time, which prevents further scaling.
From this point on, more and more requests start to queue
up at OpenWhisk, which thus have to wait longer and longer
for a free function instance. The waitTime, which captures
this waiting at OpenWhisk, therefore increases continuously
and reaches high values of up to several minutes. To mitigate
the problem of a continuously increasing waitTime for a
constant high request rate, we execute the Sampler’s requests
in batches. That is, the Sampler sends b requests to the FaaS
application at a constant rate and then waits for w seconds
before sending the next b requests. The size of the batch b and
the duration of the pause between batches w are parameters
of the Sampler. This approach prevents the accumulation
of more and more requests at OpenWhisk and thus the
continuous increase of the waitTime. If we choose b not too
large and w not too small, all requests are already served by

VOLUME 4, 2021 15

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

1 2 3 4 5 6 7 8 9 10
0

10000

m
s

sequence

1 2 3 4 5 6 7 8 9 10
0

10000

m
s

parallel small

1 2 3 4 5 6 7 8 9
0

10000

m
s

tree small

1 2 3 4 5 6 7 8 9 10 11 12
0

10000

m
s

fanout small

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5000

m
s

parallel large

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

5000

m
s

tree large

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

i

0

20000

m
s

fanout large

Distribution of inter-event time τi (30% cold starts)

FIGURE 23. Distribution of the inter-event time τi for i ∈ {1, . . . , N − 1} in
the generated datasets with 30% cold starts, where N is the number of
functions of the FaaS composition.

a function execution before the next batch of requests arrives
at OpenWhisk. However, a too small batch size will prevent
OpenWhisk from scaling, and thus no cold starts will occur.
Therefore, we choose the batch size b large enough to trigger
scaling.

The chosen parameters of the l, u, w, and b for each
dataset are shown in the Table 4. For the datasets without
cold starts, no batching of the requests is required, so we do
not need to specify the w and b parameters here. Based on
the selected parameters, distribution of the inter-event time
τi for i ∈ {1, . . . , N − 1} in the generated datasets for
the applications without cold starts is shown in Figure 21,
Figure 22 for random variant and with 30% cold starts is
shown in Figure 23, where N is the number of functions of
the FaaS composition.

D. TRAINING DETAILS AND MODEL PARAMETERS
We partition the 1000 traces of each dataset into 600 for train-
ing and 200 each for validating and testing the TPP model.
The training set is used to optimize the model parameters,
the validation set is used for evaluation during training, and
the test set is used for the final evaluation. To obtain averaged
results, we train and evaluate with each dataset using ten dif-
ferent dataset splits. For each split, we train two TPP models,
LogNormMix and TruncNorm (see §IV-D2). We optimize
the former with the loss function LNLL and the latter with

LMAE. Both loss functions evaluate the prediction of the next
function class mi with the negative log-likelihood (NLL),
but differ in the evaluation of the predicted τi. As shown
in §IV-D1 and §IV-D2, LogNormMix predicts τi with the
conditional probability distribution f∗

i (τi), whereas Trunc-
Norm provides a concrete value for τi, which we denote with
τ pred
i . The loss function LNLL evaluates the distribution f∗

i (τi)
using the NLL, whereas the loss function LMAE computes
the mean absolute error (MAE) for τ pred

i . To derive LNLL,
we denote by x = {e1 = (τ1,m1), . . . , eN = (τN ,mN)}
an event sequence representing a trace of invocations. The
likelihood of the trace is defined by

p(x|θ) =
N∏
i=1

[f∗
i (τi,mi)]S

∗
N+1 (13)

Assuming that the inter-event time τi and mark mi are
independent, we obtain our loss function:

p(x|θ) =
N∏
i=1

[f∗
i (τi,mi)]S

∗
N+1

=

N∏
i=1

[f∗
i (τi)f

∗
i (mi)]S

∗
N+1

LNLL(θ) = − log p(x|θ)

= −
N∑
i=1

[log f∗
i (τi) + log f∗

i (mi)]− logS∗
N+1

(14)

The model parameters are optimized by minimizing the
loss function. For this, we use the optimization algorithm
Adam [52] with a learning rate of 10−3 and minibatch size
of 64. We train LogNormMix and TruncNorm up to 2000
and 4000 epochs, respectively, where an epoch describes
the iteration over the entire training data. If the loss does
not decrease after 100 and 200 epochs, respectively, with
respect to the validation set, we abort the training and pick
the model with the lowest loss with respect to the valida-
tion set. To reduce the effect of overfitting, we apply L2
regularization with 10−5 on the model parameters. To model
f∗
i (τi), LogNormMix uses a log-normal mixture distribution

with K = 64 components. According to [31], the parameter
K does not have much impact on the performance of the
model, which is why we do not test any other values. As
RNN architecture, we use a gated recurrent unit (GRU) [53]
with a hidden state vector in R64. As described in §IV-D1,
we represent the mark mi and the cold-start feature ci with
embedding vectors in R32.

E. PERFORMANCE QUALITY MEASURES
The TPP LogNormMix predicts the conditional probabil-
ity distribution f∗

i (τi) over the inter-event time τi and the
conditional categorical distribution f∗

i (mi) over the marks
mi. We use the negative log-likelihood (NLL) to evaluate
the predicted distributions with respect to the test dataset
x = {(τ1,m1), . . . , (τN ,mN)}. Using NLLtime, NLLmark,

16 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

TABLE 4. The parameter configurations of the Sampler from IV-C which were used to generate the datasets for the 14 applications. For each application, one data
set without and one data set with almost exclusively cold function calls were generated.

no cold starts almost only cold starts
application l (seconds) u (seconds) l (seconds) u (seconds) b w (seconds)

sequence 0.3 0.6 10−4 10−4 50 120
parallel_small 0.3 0.6 10−4 10−4 50 120
tree_small 0.3 0.6 10−4 10−4 50 120
fanout_small 0.3 0.6 10−4 10−4 20 120
parallel_large 0.9 1.4 0.01 0.01 20 120
tree_large 0.9 1.4 0.01 0.01 20 120
fanout_large 0.9 1.4 0.01 0.01 20 120
sequence_rand 0.3 0.6 10−4 10−4 50 120
parallel_small_rand 0.3 0.6 10−4 10−4 50 120
tree_small_rand 0.3 0.6 10−4 10−4 50 120
fanout_small_rand 0.3 0.6 10−4 10−4 20 120
parallel_large_rand 0.9 1.4 0.01 0.01 20 120
tree_large_rand 0.9 1.4 0.01 0.01 20 120
fanout_large_rand 0.9 1.4 0.01 0.01 20 120

and NLLtotal, we evaluate the distribution over τi, mi, and
both variables, respectively. The NLL quality measures are
defined as follows:

NLLtime = − 1

N

N∑
i=1

log f∗
i (τi)− logS∗

N+1

NLLmark = − 1

N

N∑
i=1

log f∗
i (mi)

NLLtotal = NLLtime + NLLmark

(15)

It is worth noting here that a single NLL value has little
explanatory power. That is, we cannot evaluate whether a
value is "good" without referring to other values. For this
reason, the relative differences between the NLL values for
different datasets is analyzed [31].

The accuracy is another quality measure that evaluates
LogNormMix’s predictive capability of the mark mi. It de-
scribes the fraction of correctly predicted marks, such that
1.0 is the optimal and 0.0 is the worst value for this metric.
We obtain the predicted class cpred of the mark mi with

cpred = argmax
c

πi,c, (16)

where πi,c describes the probability that the ith function
invocation is of class c (see §IV-D3). We expect a correlation
between the measure NLLmark and the accuracy. The accu-
racy measure evaluates the TPP according to its capability to
predict a single class for the next function invocation. The
FaaS platform can use the prediction to scale the correspond-
ing class in advance.

The TPP TruncNorm predicts a single value for the inter-
event time τi and also, like LogNormMix, a conditional
categorical distribution over mi (see §IV-D2). We evaluate

the predicted value for the inter-event time, denoted as τ pred
i ,

by computing the mean absolute error

MAE =
1

N

N∑
i=1

|τi − τ pred
i | (17)

for the test dataset. Besides the mean value of the absolute
errors, the distribution of the errors is interesting. This give us
information if the time predicted for the invocation was too
early or too late. Therefore, we compute for the test dataset
the errors using the following equation:

Ei = τ pred
i − τi, i ∈ {1, . . . , N} (18)

and visualize their distribution. Here, a negative value
indicates that the predicted time was too early.

Like LogNormMix, TruncNorm also predicts a distribu-
tion over the mark mi. However, in contrast to LogNormMix,
we do not evaluate this distribution because the results of the
two TPPs would be similar. The reason for this is that both
predict their mark distribution conditionally independent of
the time. Therefore, the distribution is only conditioned on
the history embedding hi produced by an RNN in both TPPs.

VI. RESULTS
We evaluated our TPP models LogNormMix (§IV-D1) and
TruncNorm (§IV-D2) with respect to various applications
(§V-A), which differ in structure, number of functions, and
randomization of the function’s sleep command. In this sec-
tion, we present the results of both the datasets (with and
without cold starts). We evaluated predicted distributions
with the negative log-likelihood (NLL) and predicted single
values with the mean absolute error (MAE). For both quality
measures, lower values are better and zero is optimal. As

VOLUME 4, 2021 17

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLtotal

FIGURE 24. LogNormMix evaluated via the negative log-likelihood of the
mark (function class) and inter-event time prediction (NLLtotal) with respect to
the test dataset, with a lower value being better and zero being optimal. The
datasets have no cold starts.

2 3 4 5

negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLtime

FIGURE 25. LogNormMix evaluated via the negative log-likelihood of the
inter-event time prediction (NLLtime) with respect to the test dataset, with a
lower value being better and zero being optimal. The datasets have no cold
starts.

described in §V-E, a single NLL value has little explanatory
power. Instead, the differences between values for different
applications are of interest. In contrast, a single MAE value is
meaningful and evaluable even without comparison to other
values.

A. PREDICTIONS ON DATASETS WITHOUT COLD
STARTS

In this section, we present the results of prediction on dataset
without cold starts.

1) LogNormMix via NLLtotal

LogNormMix predicts a distribution for the inter-event time
τi and for the mark mi, i.e., for the functional class. Using
NLLtotal from equation (15), we evaluated both distributions
combined and present the results in Figure 24. Looking at
the NLL measures NLLtotal,NLLtime, NLLmark in Figure 24,
Figure 25 and Figure 26, we notice that NLLtime has a much
higher proportion of NLLtotal than NLLmark. For example,
the application tree_large_rand has a value of about 3.8 for
NLLtotal. From this value, about 3.25 accounts for NLLtime
and about 0.55 for NLLmark. Thus, we can infer that it is
much more challenging for LogNormMix to predict the time
than the functional class. Future research should therefore
prioritize improving the prediction of the inter-event time τi.

2) LogNormMix via NLLtime

We evaluated the inter-event time with NLLtime from equa-
tion (15) and show the results in Figure 25. We draw the
following conclusions:

Differences between Randomized and Non-Randomized
Applications: A look at the metric NLLtime in Fig-
ure 25 shows that LogNormMix performed better for non-
randomized applications than for randomized ones. This
was expected since the function duration was drawn from a
gamma distribution instead of being constant. When we look
at the distributions of the inter-event time τi in Figure 21
and Figure 22, we see that the distributions for randomized
applications have a higher variance than for non-randomized
ones. This higher variance makes prediction more challeng-
ing for the TPPs. The fact that the function duration is drawn
independently of the gamma distribution also impairs the
prediction. In a real-world application, some dependence
between function execution times can be assumed. For
example, if the execution time of a function is longer than
usual due to a high load on the FaaS platform, it is likely
that subsequent functions will also execute longer than usual.
The information about the overload would be encoded in
the resulting higher inter-event times, thus improving time
prediction of the TPP.

Furthermore, we see in Figure 25 that the results for appli-
cations with a small proportion of parallel functions suffered
particularly from randomization. For example, this is evident
for the applications sequence_small, which has no parallel
functions, and fanout_large, which has a high proportion
of parallel functions. While the TPP performed marginally
worse in the non-randomized case for sequence_small than
for fanout_large (difference of approximately 0.25), this dif-
ference is much more significant in the randomized case
(difference of approximately 3). This is because in sequence,
each function has a successor that is invoked after a sleep
command completes. This means that there is a randomized
sleep command between every two invocations, which makes
the predictions more difficult. In contrast, the parallel func-
tions in fanout (e.g., functions f21 to f29 in 20) are invoked
as a sequence without any intermediate randomized sleep
commands, so the results in fanout are less affected by the
randomization. This is also illustrated in 22, where we see
in the diagram of sequence_rand that the inter-event time
distributions for all i have high variance. In comparison, in
the diagram of fanout_large_rand, only the distributions of
τ2, τ11 and τ12 have high variance. The other distributions
with a low variance refer to parallel functions (e.g., f21 to
f29). Transferring this knowledge to real-world scenarios,
we can say that applications with parallel functions without
uncertainty between invocations, e.g., caused by a database
query with high variance in execution time, facilitate time
prediction.

Differences between Small and Large Applications: It
is interesting that in Figure 25 the result for the applica-
tions parallel_small and parallel_large are equal in the non-
randomized case, but the result for parallel_large is slightly

18 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

0.0 0.1 0.2 0.3 0.4 0.5 0.6

negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLmark

FIGURE 26. LogNormMix evaluated via the negative log-likelihood of the
mark (function class) prediction (NLLmark) with respect to the test dataset, with
a lower value being better and zero being optimal. The datasets have no cold
starts.

better in the randomized case. This contradicts our assump-
tion (presented in Figure 18) that a higher number of parallel
function branches would affect the prediction performance
for the inter-event time. Moreover, we see in Figure 25
that LogNormMix performed better for tree_large than for
tree_small in the non-randomized case and that the results
of both applications are equal in the randomized case. This
indicates that a higher tree depth has no negative influence on
the prediction performance. In addition, we see in Figure 25
that the prediction performance for fanout_large was better
than for fanout_small, which is due to the higher proportion
of parallel functions. This also shows us that scaling the
number of parallel functions in the application structure does
not harm the time prediction performance of the TPP.

3) LogNormMix via NLLmark

In addition, we evaluated the function class distributions
separately with NLLmark from equation (15) and show the
results in Figure 26. The NLLmark measure in Figure 26
shows that LogNormMix performed well for the majority of
the applications, i.e., the values are close to zero. However,
exceptions are the results for tree_large and the randomized
versions of parallel and tree. A drop in performance between
the small and the large versions can be observed for the two
latter applications, parallel and tree. Characteristic for the
structure of these applications is a high number of parallel
function branches. This indicates that the function class
prediction is challenging for applications with this structure.
Thus, the assumption in Figure 18 holds for function class
prediction, in contrast to the time prediction as described
previously. Since the function class order is the same for
all traces, LogNormMix performed best for the application
sequence with a near-zero NLL value.

4) LogNormMix via Accuracy
Another measure that evaluates the performance in terms
of the function class prediction is the accuracy from equa-
tion (16). The measure is defined in the range [0.0, 1.0],
where 1.0 is the best (all classes were predicted correctly)
and 0.0 is the worst. We show the results of LogNormMix
with respect to this measure in Figure 27. The results of

0.80 0.85 0.90 0.95 1.00

accuracy

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via accuracy

FIGURE 27. LogNormMix evaluated via the accuracy of the mark (function
class) prediction with respect to the test dataset, with a higher value being
better and 1.0 being optimal. The datasets have no cold starts.

the accuracy in Figure 27 reflect the results of the NLLmark
measure, though the values are more interpretable. We see
that LogNormMix achieved an accuracy close to 1.0 for
the majority of the applications, meaning that almost all
invocations were classified correctly. Analogous to NLLmark,
LogNormMix achieved worse results for the randomized
versions of parallel and tree. However, an accuracy of above
0.93 was still achieved for tree_large, parallel_small_rand,
and tree_small_rand, which is acceptable. An accuracy of
about 0.8 for parallel_large_rand and tree_large_rand, on the
other hand, could further be improved by collecting more
data.

5) TruncNorm via MAE
TruncNorm predicts a single value for the inter-event time
τi. We evaluated this prediction using the MAE from equa-
tion (17) and show the results in Figure 28. Figure 28 shows
the results of TruncNorm’s inter-event time predictions in
terms of the mean absolute error. The results are similar to
those for the NLLtime measure, i.e., they exhibit the same
patterns: better results for non-randomized applications than
for randomized ones, smaller drop in performance due to
randomization for applications with a higher proportion of
parallel functions (e.g., tree and fanout), and no negative
impact on the results when scaling the application structure
from small to large. For the non-randomized applications, all
MAE values are below 20ms, which is reasonable given the
duration of the sleep command of 300s to 500ms. This also
applies to the randomized applications, excluding the appli-
cations parallel and sequence. For these two applications, the
values of about 40 and 60ms can be improved by providing
more features for the TPP in future work.

6) TruncNorm via Ei

In addition, we calculated the errors Ei from equation (18)
for the entire test dataset and visualize their distribution in
Figure 29. Here, lower absolute values are better and zero is
optimal. The error distributions of the inter-event time pre-
dictions in Figure 29 show that TruncNorm performed well
for most applications. However, analogous to the results for
the mean absolute error, the performance for the randomized
versions of sequence and parallel was relatively poor. Here,

VOLUME 4, 2021 19

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

0 10 20 30 40 50 60

milliseconds

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

TruncNorm via MAE

FIGURE 28. TruncNorm evaluated via the mean absolute error (MAE) of the
inter-event time prediction with respect to the test dataset, with a lower value
being better and zero being optimal. The datasets have no cold starts.

−150 −100 −50 0 50 100 150

milliseconds

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

TruncNorm via Ei

FIGURE 29. TruncNorm evaluated via the distribution of the errors between
the predicted and true inter-event time (Ei = τpred

i − τi) with respect to the
test dataset, with a lower absolute value being better and zero being optimal.
A negative value indicates that the predicted time for the invocation was too
early. The datasets have no cold starts.

the error distributions have higher variances than for the
other applications. Notably, all distributions are symmetric
and centered in zero.

B. FUNCTION PREDICTION ON DATASETS WITH COLD
STARTS
This section repeats the evaluation from §VI-A but with the
difference that 30% of the function invocations were cold
starts. Another difference is that we trained and evaluated
the models twice for each application. Once the cold start
feature ci ∈ {0, 1} was included in the event representation,
i.e. (τi,mi, ci), and once it was not, i.e. (τi,mi). The feature
indicates whether the ith invocation was a cold-start.

1) LogNormMix via NLLtime

We evaluated the inter-event time with NLLtime from equa-
tion (15) and present the results in Figure 31. The results
regarding NLLtime in Figure 31 are similar to the results
for this measure without cold starts in Figure 25, yet with
slightly poorer performance. However, one difference is that
LogNormMix also performed relatively poorly for the non-
randomized versions of the applications sequence and paral-
lel. At the same time, this was not the case for the datasets
without cold starts. Looking at the inter-event time distribu-
tions in the cold start datasets, illustrated in Figure 23, we see
that they have a high variance for the applications sequence,
parallel_small, and parallel_large. This obviously affects the

2 3 4 5 6 7

negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLtotal

cold start feature
False
True

FIGURE 30. LogNormMix evaluated via the negative log-likelihood of the
mark (function class) and inter-event time prediction (NLLtotal) with respect to
the test dataset, with a lower value being better and zero being optimal. 30%
of the invocations were cold starts, where for each application, the TPP was
trained and evaluated once with the cold start feature ci enabled and once
with it disabled.

2 3 4 5 6 7

negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLtime

cold start feature
False
True

FIGURE 31. LogNormMix evaluated via the negative log-likelihood of the
inter-event time prediction (NLLtime) with respect to the test dataset, with a
lower value being better and zero being optimal. 30% of the invocations were
cold starts, where for each application, the TPP was trained and evaluated
once with the cold start feature ci enabled and once with it disabled.

prediction performance. In comparison, the inter-event time
distributions in the datasets without cold starts, illustrated
in Figure 21, have almost no variance. The high variance
of the inter-event time distributions is caused by the high
variance of the waitTime distributions shown in Figure 32.
These very high waitTime values, up to 10 seconds, are
caused by the high load imposed on OpenWhisk to enforce
cold starts. Furthermore, it can be seen in Figure 31 that the
enabled cold start feature slightly improved the prediction
results. However, the improvement is marginal as the major
uncertainty in inter-event time prediction comes from the
waitTime values with high variance. The feature does provide
the information that a cold start occurred and that a higher
inter-event time can be expected, but due to the high variance
of the waitTime, prediction is still challenging.

2) LogNormMix via NLLmark

Looking at the results of the NLLmark measure in Figure 33,
it is noticeable that they are slightly worse than the results for
the datasets without cold starts in Figure 26. This implies that
the function class prediction was also affected by the higher
variance of the inter-event time (see Figure 23) caused by
the higher variance of the waitTime (see Figure 32). Similar
to the results without cold starts, LogNormMix performed
worse for the applications parallel and tree due to their

20 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

1 2 3 4 5 6 7 8 9 10 11
0

10

se
c

sequence

1 2 3 4 5 6 7 8 9 10 11
0

10

se
c

parallel small

1 2 3 4 5 6 7 8 9 10
0

25

se
c

tree small

1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

se
c

fanout small

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

10

se
c

parallel large

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

25

se
c

tree large

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

i

0

20

se
c

fanout large

Distribution of waitTime wi (30% cold starts)

FIGURE 32. Distribution of the waitTime wi for i ∈ {1, . . . , N} in the
generated datasets with 30% cold starts, where N is the number of functions
of the FaaS composition.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLmark

cold start feature
False
True

FIGURE 33. LogNormMix evaluated via the negative log-likelihood of the
mark (function class) prediction (NLLmark) with respect to the test dataset, with
a lower value being better and zero being optimal. 30% of the invocations were
cold starts, where for each application, the TPP was trained and evaluated
once with the cold start feature ci enabled and once with it disabled.

structure with parallel function branches. Enabling the cold
start features led to improvements, but as with the results for
the NLLtime measure, these were marginal.

3) LogNormMix via Accuracy

Analogous to the drop in performance for NLLmark due
to cold starts, this is also the case for the results with
the measure accuracy in Figure 34. Especially, the results
for the non-randomized versions of parallel and tree were
affected by the high variance of waitTime. For example,
the results for parallel_small and tree_small decreased by

0.75 0.80 0.85 0.90 0.95 1.00

accuracy

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via accuracy

cold start feature
False
True

FIGURE 34. LogNormMix evaluated via the accuracy of the mark (function
class) prediction with respect to the test dataset, with a higher value being
better and 1.0 being optimal. 30% of the invocations were cold starts, where
for each application, the TPP was trained and evaluated once with the cold
start feature ci enabled and once with it disabled.

approximately 0.06 and 0.08, respectively, compared to the
results for the datasets without cold starts in Figure 27.
The highest decrease in accuracy of approximately 0.11 was
experienced for the application parallel_large. Even though
the performance generally decreased due to the cold starts,
the results are still good. Thus, the accuracy for paral-
lel_large_rand and tree_large_rand decreased by only about
0.03 and 0.05, respectively. Similarly, parallel_small_rand
and tree_small_rand decreased by about 0.03 and 0.06, re-
spectively. The accuracy for all versions of fanout decreased
by at most 0.03.

4) TruncNorm via MAE
Similar to the decrease in performance with respect to
NLLtime due to the cold starts, a decrease in performance
with respect to the mean absolute error in Figure 28 is also
observed. The high variance of the waitTime in the cold start
datasets significantly affected the prediction performance
of TruncNorm, resulting in MAEs of more than 400 ms.
Compared to the results for the datasets without cold starts in
Figure 28, where the MAE was below 20 ms for most appli-
cations, this is a significant increase. The MAE is especially
high for the applications sequence and the small versions of
parallel, with values between 1000 and 1500ms. This could
be related to the fact that the structures of these applications
have a low proportion of parallel functions. Therefore, as
seen in Figure 23, most of the inter-event time distributions
have a high variance. In contrast, the performance of Trunc-
Norm is relatively good for the large versions of parallel.
This is surprising since LogNormMix struggled to predict
the time for these applications, as can be seen in Figure 31.
We can also observe that the cold start feature improves the
prediction performance, especially for the small versions of
sequence and parallel.

5) TruncNorm via Ei

The error distributions of the inter-event time predictions in
Figure 36 show that TruncNorm achieved good results for
most applications, i.e., absolute values close to zero. Analo-
gous to the results with mean absolute error in Figure 35, the

VOLUME 4, 2021 21

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

200 400 600 800 1000 1200 1400 1600

milliseconds

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

TruncNorm via MAE

cold start feature
False
True

FIGURE 35. TruncNorm evaluated via the mean absolute error (MAE) of the
inter-event time prediction with respect to the test dataset, with a lower value
being better and zero being optimal. 30% of the invocations were cold starts,
where for each application, the TPP was trained and evaluated once with the
cold start feature ci enabled and once with it disabled.

−6000 −4000 −2000 0 2000

milliseconds

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

TruncNorm via Ei

cold start feature
False
True

FIGURE 36. TruncNorm evaluated via the distribution of the errors between
the predicted and true inter-event time (Ei = τpred

i − τi) with respect to the
test dataset, with a lower absolute value being better and zero being optimal.
A negative value indicates that the predicted time for the invocation was too
early. 30% of the invocations were cold starts, where for each application, the
TPP was trained and evaluated once with the cold start feature ci enabled and
once with it disabled.

performance for the small versions of parallel and especially
sequence is relatively poor as the error distributions have high
variance. Furthermore, the error distributions show that most
of the errors were negative. By the definition Ei = τ pred

i − τi,
a negative error signifies that the predicted time for the
invocation was too early. This is since the high waitTime
delayed the invocation.

C. TRAINING DURATION
Table 5 and Table 6 show the training duration of the TPP
models LogNormMix (§IV-D1) and TruncNorm (§IV-D2)
for different datasets using the technical infrastructure from
§V-B. The training duration was measured in process time
(see Table 5) and in number of epochs (see Table 6), where
an epoch describes one iteration over the entire training
dataset. Each measured value is the average of ten training
iterations with different train/validation/test dataset splits
(§V-D). We trained LogNormMix using the loss function
LNLL from equation (14), which evaluates the prediction for
the inter-event time τi with the negative log-likelihood, and
TruncNorm with the loss function LMAE from equation (17),
which evaluates the prediction for τi with the mean absolute
error. We trained both models on datasets that contained no
cold function invocations and on datasets with 30% of the
invocations being cold starts (see V-C). We can provide the

TPP with the optional feature ci, which indicates whether
the current invocation was a cold start. We trained with each
cold start dataset twice, once with the feature enabled and
once with it disabled. In this way, we also separated our
measurements of the training duration.

VII. RELATED WORK
With the advent of serverless computing, there is a significant
amount of research aimed at optimizing cloud computing
resource utilization [54]–[57]. There has been some work
on the performance profiling of various FaaS platforms.
Wang et al. [58] performed an in-depth study of resource
management and performance isolation with three popular
serverless computing providers: AWS Lambda, Azure Func-
tions, and Google Cloud Functions. Their analysis demon-
strates a reasonable difference in performance between the
FaaS platforms. Furthermore, Shahrad et al. [59] studied
the architectural implications of serverless computing and
pointed out that exploitation of system architectural features
like temporal locality and reuse are hampered by the short
function runtimes in FaaS. Chadha et al. [60] examine the un-
derlying processor architectures for Google Cloud Functions
(GCF) and determine the optimization of FaaS functions
using Numba can improve performance by and save costs on
average.

Many approaches have been proposed to reduce the oc-
currences of cold starts. A solution to reduce cold starts is
presented in [11]. The developer defines here in a config-
uration file which function classes communicate with each
other. A middleware acts as an early warning mechanism
and is deployed together with the FaaS application. When
a function is invoked, the middleware sends so-called hinting
messages to the subsequent functions defined in the configu-
ration file. Thus, these are initialized early and cold starts are
avoided. The FaaS orchestration platform OpenWhisk [25]
also follows a pooling approach by consistently providing a
pool of so-called stem cell containers. These consist only of a
base image, i.e., without function code and libraries, enabling
faster function initialization. AWS Lambda employs a fixed-
time “keep-alive” policy to keep resources in memory after
function executions [61]. Li et al. [22] reduces cold starts by
providing a pool of already initialized functions of a certain
class. This pool can be used in case of upscaling. Oakes
et al. [62] reduces the size of the function deployment by
separating function and library code. Libraries are deployed
separately and can be used by multiple functions concur-
rently. Defuse in [63] leverages the dependencies among
serverless functions to schedule them directly. While these
described approaches are often based on pooling or faster
function initialization, our approach tries to reduce cold starts
by predicting function invocations using TPPs. This approach
also has the advantage that the predictions can be used to
optimize the function-server assignment.

Pawlik et al. [64] state that to assess the feasibility of
running an application on the FaaS platform, we have to
determine the SLO of the application. This can be achieved

22 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

TABLE 5. Training times of the TPP models LogNormMix and TruncNorm measured in process time (seconds).

process time (seconds) LogNormMix with loss LNLL TruncNorm with loss LMAE
no cold starts 30% cold starts no cold starts 30% cold starts

feature disabled feature disabled feature enabled feature disabled feature disabled feature enabled
sequence 68s 37s 36s 314s 592s 607s
parallel_small 111s 67s 61s 451s 593s 686s
tree_small 72s 72s 55s 355s 638s 650s
fanout_small 28s 40s 41s 287s 615s 652s
parallel_large 143s 80s 58s 465s 641s 681s
tree_large 38s 87s 94s 185s 489s 587s
fanout_large 59s 42s 39s 295s 651s 684s
sequence_rand 65s 57s 41s 249s 619s 841s
parallel_small_rand 40s 50s 39s 257s 659s 607s
tree_small_rand 50s 75s 48s 152s 588s 602s
fanout_small_rand 99s 79s 50s 276s 614s 648s
parallel_large_rand 34s 33s 31s 142s 603s 697s
tree_large_rand 43s 67s 59s 165s 575s 630s
fanout_large_rand 104s 79s 51s 356s 644s 686s

TABLE 6. Training times of TPP models LogNormMix and TruncNorm measured in the number of epochs.

number of epochs LogNormMix with loss LNLL TruncNorm with loss LMAE
no cold starts 30% cold starts no cold starts 30% cold starts

feature disabled feature disabled feature enabled feature disabled feature disabled feature enabled
sequence 428 237 230 2102 4000 4000
parallel_small 698 422 379 3034 4000 4000
tree_small 450 425 318 2395 4000 4000
fanout_small 177 245 247 1859 4000 4000
parallel_large 852 478 339 2855 3953 3992
tree_large 228 516 544 1134 2987 3433
fanout_large 354 256 226 1815 4000 4000
sequence_rand 345 360 217 1646 4000 4000
parallel_small_rand 240 294 246 1303 4000 4000
tree_small_rand 323 479 302 1029 4000 4000
fanout_small_rand 599 478 301 1756 4000 4000
parallel_large_rand 202 199 184 872 3715 4000
tree_large_rand 259 395 346 998 3523 3669
fanout_large_rand 620 475 301 2179 3981 4000

by constructing a reliable performance model capable of
analyzing a function performance, which requires knowledge
about the performance of the infrastructure. Cloud service
providers abstract details such as the number of cores, mem-
ory available, and network I/O capacity in the underlying
hardware, usually limiting the available information to func-
tion time limit, maximum memory. The allocated memory
also affects the provisioned CPU quota [65]. In our previous
work [66], we developed a tool for estimating the maxi-
mum number of requests a microservice can handle when
it is sandboxed. This capacity estimation of microservices
enables us to ensure the flexibility of the capacity planning
for a microservices application. While these approaches work
at the level of function modeling, but with TppFaaS we are
modeling the FaaS application and user-workload invoca-
tions, which allows to better optimize the function-server
assignment and anomalies detection.

VIII. CONCLUSION AND FUTURE SCOPE
This work has shown that neural temporal point processes
(TPPs) effectively model the time and class of function
invocations in FaaS compositions. For this purpose, we in-
troduced TppFaaS, a system for implementing FaaS compo-
sitions and generating data from them that can be used to
train and test neural TPPs. In this data, function invocations
are represented by the timing of their function trigger events.
In addition, the data contains meta-information such as the
function class and the cold start initialization time. Using
TppFaaS, we implemented multiple versions of FaaS compo-
sitions with a sequential, parallel, and tree-shaped structure.
The versions differed in the randomization of the function’s
sleep command and the number of functions. Based on the
compositions, datasets with and without cold starts were
generated. With these datasets, we trained and tested the two
TPPs LogNormMix and TruncNorm.

It was shown that both models managed to capture the
latent temporal dynamics of the different FaaS compositions.

VOLUME 4, 2021 23

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

We observed that the performance of the time prediction was
not affected by scaling the composition structure. Moreover,
the function class prediction proved to be more challeng-
ing for compositions involving parallel executed function
branches. For datasets without cold starts, the TPPs per-
formed well with respect to all measures. Here, LogNorm-
Mix achieved an accuracy of over 0.94 for most applications,
i.e., the class of 94% of the invocations was predicted cor-
rectly. Also, the mean absolute error of TruncNorm’s time
prediction was below 22ms for most applications. However,
the predictions for the datasets with cold starts were more
challenging. Here, TruncNorm achieved a mean absolute
error between 200 and 750ms for most applications. The
high errors resulted from the high variance of the waitTime,
which measures the time an invocation request waits for
execution in the internal OpenWhisk system. In addition,
LogNormMix’s function class prediction performance de-
clined for the cold start datasets. Nevertheless, an accuracy
above 0.85 was achieved for most applications, which is still
satisfactory. The cold start feature, which indicates whether
a cold start occurred, improved the results only marginally.
This is because the most uncertainty in the prediction is
caused by the high variance of the waitTime and not by the
variance of the cold start initialization time. Future work
may therefore provide additional features to the TPP to
assist in the estimation of the waitTime. Such as the number
of invoker resources or the number of invocation requests
waiting in the OpenWhisk system. In general, predicting the
time was more difficult than predicting the functional class
for datasets with and without cold starts. Therefore, future
work should prioritize improving the prediction of the time
rather than the functional class.

Further future work could involve the application of
the probability distribution predicted by LogNormMix for
anomaly detection. In FaaS compositions, anomalies can
occur in the form of abnormally short or long function
executions or unexecuted functions. A trace containing such
an anomaly would have a lower probability with respect to
the probability distribution predicted by LogNormMix. In
order to capture anomalies in execution duration, the time
at which a function ends must also be recorded. Thus, each
function invocation is represented by the trigger event and
the event marking the end of execution. Another idea for
future research might be the inclusion of conditional function
invocations. Here, the input object of the function could be
encoded as a vector representation provided to the TPP as
a feature. Similarly, when a function performs a database
query, the SQL statement could be encoded as a vector using
natural language processing. This could assist the TPP in
estimating the execution time of the query.

REFERENCES
[1] Mohak Chadha, Anshul Jindal, and Michael Gerndt. Towards federated

learning using faas fabric. In Proceedings of the 2020 Sixth International
Workshop on Serverless Computing, WoSC’20, page 49–54, New York,
NY, USA, 2020. Association for Computing Machinery.

[2] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and

Randy Katz. Cirrus: A serverless framework for end-to-end ml workflows.
In Proceedings of the ACM Symposium on Cloud Computing, pages 13–
24, 2019.

[3] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin
Recht, Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram
Venkataraman. Serverless linear algebra. In Proceedings of the 11th ACM
Symposium on Cloud Computing, SoCC ’20, page 281–295, New York,
NY, USA, 2020. Association for Computing Machinery.

[4] Ryan Chard, Tyler J. Skluzacek, Zhuozhao Li, Yadu Babuji, Anna
Woodard, Ben Blaiszik, Steven Tuecke, Ian Foster, and Kyle Chard.
Serverless supercomputing: High performance function as a service for
science, 2019.

[5] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin
Recht. Occupy the cloud: Distributed computing for the 99%. In
Proceedings of the 2017 Symposium on Cloud Computing, pages 445–
451. IEEE, 2017.

[6] Microsoft. Azure functions. https://azure.microsoft.com/de-de/services/
functions/. [Accessed: 4 September 2021].

[7] Google. Cloud functions. https://cloud.google.com/functions. [Accessed:
4 September 2021].

[8] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slomin-
ski. The rise of serverless computing. Commun. ACM, 62(12):44–54,
November 2019.

[9] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slomin-
ski. The rise of serverless computing. Communications of the ACM,
62(12):44–54, 2019.

[10] Davide Taibi, Josef Spillner, and Konrad Wawruch. Serverless Computing-
Where Are We Now, and Where Are We Heading? IEEE Software,
38(1):25–31, 2021.

[11] David Bermbach, Ahmet Serdar Karakaya, and Simon Buchholz. Using
application knowledge to reduce cold starts in FaaS services. Proceedings
of the ACM Symposium on Applied Computing, pages 134–143, 2020.

[12] Martin Grambow, Tobias Pfandzelter, Luk Burchard, Carsten Schubert,
Max Zhao, and David Bermbach. Befaas: An application-centric bench-
marking framework for faas platforms. CoRR, abs/2102.12770, 2021.

[13] Amazon Web Services. Aws step functions. https://aws.amazon.com/
step-functions/. [Accessed: 4 September 2021].

[14] Microsoft. Azure durable functions. https://docs.microsoft.com/en-us/
azure/azure-functions/durable/. [Accessed: 4 September 2021].

[15] OpenWhisk. Apache openwhisk composer. https://github.com/apache/
openwhisk-composer. [Accessed: 4 September 2021].

[16] Amazon Web Services. Aws step functions features. https://aws.amazon.
com/step-functions/features/. [Accessed: 4 September 2021].

[17] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Alek-
sander Slominski, and Philippe Suter. Serverless computing: Current
trends and open problems. In Research Advances in Cloud Computing,
pages 1–20. Springer Singapore, 2017.

[18] Adam Eivy. Be wary of the economics of "serverless" cloud computing.
IEEE Cloud Comput., 4(2):6–12, 2017.

[19] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren
Nayak, and Vadim Sukhomlinov. Agile cold starts for scalable serverless.
In 11th {USENIX} Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 19). USENIX Association, 2019.

[20] Renato Byrro. Can we solve serverless cold starts? https://dashbird.io/
blog/can-we-solve-serverless-cold-starts/, 2019. [Accessed: 04/17/2020].

[21] Johannes Manner, Martin Endreb, Tobias Heckel, and Guido Wirtz. Cold
start influencing factors in function as a service. In Proceedings - 11th
IEEE/ACM International Conference on Utility and Cloud Computing
Companion, UCC Companion 2018, pages 181–188, 2019.

[22] Ping-Min Lin and Alex Glikson. Mitigating cold starts in serverless
platforms: A pool-based approach. CoRR, abs/1903.12221, 2019.

[23] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. Server-
less computing: One step forward, two steps back. CIDR 2019 - 9th
Biennial Conference on Innovative Data Systems Research, 3, 2019.

[24] Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan
Günnemann. Neural temporal point processes: A review. In Zhi-Hua
Zhou, editor, Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21, pages 4585–4593. International Joint
Conferences on Artificial Intelligence Organization, 8 2021. Survey Track.

[25] OpenWhisk. Openwhisk: Open source serverless cloud platform. https:
//openwhisk.apache.org. [Accessed: 16 May 2021].

24 VOLUME 4, 2021

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

[26] IBM. Ibm cloud functions. https://cloud.ibm.com/functions/. [Accessed:
7 September 2021].

[27] OpenWhisk. Openwhisk annotations. https://github.com/apache/
openwhisk/blob/master/docs/annotations.md. [Accessed: 30 April 2021].

[28] OpenWhisk. How openwhisk works. https://github.com/apache/
openwhisk/blob/master/docs/about.md. [Accessed: 7 September 2021].

[29] Will Reese. Nginx: The high-performance web server and reverse proxy.
Linux Journal, 2008:2, 01 2008.

[30] Apache Software Foundation. Apache kafka. https://kafka.apache.org/.
[Accessed: 7 September 2021].

[31] Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free
learning of temporal point processes. CoRR, abs/1909.12127, 2019.

[32] A De, U Upadhyay, and M Gomez-Rodriguez. Lecture Notes for Human-
Centered ML: Temporal Point Processes, 2019.

[33] Oleksandr Shchur. Temporal Point Processes 1: The Conditional Intensity
Function. https://shchur.github.io/blog/2020/tpp1-conditional-intensity/,
2020. [Accessed: 16 June 2021].

[34] Oleksandr Shchur and Stephan Günnemann. Lecture notes in machine
learning for graphs and sequential data, 2020.

[35] Marian-Andrei Rizoiu, Young Lee, and Swapnil Mishra. Hawkes pro-
cesses for events in social media. Frontiers of Multimedia Research, pages
191–218, 2017.

[36] Alan G. Hawkes. Spectra of some self-exciting and mutually exciting point
processes. Biometrika, 58(1):83–90, 1971.

[37] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. Recurrent marked temporal point processes:
Embedding event history to vector. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16, page 1555–1564, New York, NY, USA, 2016. Asso-
ciation for Computing Machinery.

[38] Takahiro Omi, Naonori Ueda, and Kazuyuki Aihara. Fully neural network
based model for general temporal point processes. In Proceedings of the
33rd International Conference on Neural Information Processing Systems,
Red Hook, NY, USA, 2019. Curran Associates Inc.

[39] G.J. McLachlan and D. Peel. Finite Mixture Models. Wiley Series in
Probability and Statistics. Wiley, 2004.

[40] OpenTelemetry. Opentelemetry javascript. https://opentelemetry.io/docs/
js/. [Accessed: 5 May 2021].

[41] Zipkin. Zipkin. https://zipkin.io/. [Accessed: 4 September 2021].
[42] C. E. Shannon. A mathematical theory of communication. SIGMOBILE

Mob. Comput. Commun. Rev., 5(1):3–55, January 2001.
[43] Sung Y. Park and Anil K. Bera. Maximum entropy autoregressive con-

ditional heteroskedasticity model. Journal of Econometrics, 150(2):219–
230, 2009. Recent Development in Financial Econometrics.

[44] Serverless Framework. Serverless apache openwhisk plugin. https:
//github.com/serverless/serverless-openwhisk. [Accessed: 11 May 2021].

[45] OpenTelemetry. Opentelemetry: Data collection. https://opentelemetry.io/
docs/concepts/data-collection/. [Accessed: 29 April 2021].

[46] OpenTelemetry. Opentelemetry collector: Oltp receiver.
https://github.com/open-telemetry/opentelemetry-collector/tree/main/
receiver/otlpreceiver. [Accessed: 30 April 2021].

[47] OpenTelemetry. Opentelemetry collector: Batch processor.
https://github.com/open-telemetry/opentelemetry-collector/tree/main/
processor/batchprocessor. [Accessed: 30 April 2021].

[48] OpenWhisk. Openwhisk: inittime in duration. https://github.com/apache/
openwhisk/pull/3053/files/. [Accessed: 30 April 2021].

[49] Zipkin. Zipkin architecture. https://zipkin.io/pages/architecture.html.
[Accessed: 12 May 2021].

[50] Oleksandr Shchur. Loss with NLL of mark and MAE of inter-event
time. https://github.com/shchur/ifl-tpp/issues/14, 2021. [Accessed: 13
September 2021].

[51] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
Neural Networks, 61:85–117, 2015.

[52] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic
optimization. 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings, pages 1–15, 2015.

[53] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine
translation. EMNLP 2014 - 2014 Conference on Empirical Methods
in Natural Language Processing, Proceedings of the Conference, pages
1724–1734, 2014.

[54] Mustafa Akin. How does proportional CPU allocation work with AWS
Lambda? | Opsgenie Engineering. https://engineering.opsgenie.com/how-
does-proportional-cpu-allocation-work-with-aws-lambda-41cd44da3cac.
[Accessed: 26 July 2021].

[55] Srinivas Kulkarni. Optimize AWS lambda memory | Towards Data
Science. https://towardsdatascience.com/optimize-aws-lambda-memory-
more-memory-doesnt-mean-more-costs-51ba566fecc7. [Accessed: 26
July 2021].

[56] Anshul Jindal, Michael Gerndt, Mohak Chadha, Vladimir Podolskiy, and
Pengfei Chen. Function delivery network: Extending serverless com-
puting for heterogeneous platforms. Software: Practice and Experience,
51(9):1936–1963, 2021.

[57] Anshul Jindal, Julian Frielinghaus, Mohak Chadha, and Michael Gerndt.
Courier: Delivering serverless functions within heterogeneous faas deploy-
ments. In Proceedings of the 14th IEEE/ACM International Conference
on Utility and Cloud Computing, UCC ’21, New York, NY, USA, 2021.
Association for Computing Machinery.

[58] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the curtains of serverless platforms. In
2018 {USENIX} Annual Technical Conference ({USENIX} {ATC}18),
pages 133–146. USENIX Association, 2018.

[59] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architec-
tural implications of function-as-a-service computing. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 1063–1075, 2019.

[60] Mohak Chadha, Anshul Jindal, and Michael Gerndt. Architecture-specific
performance optimization of compute-intensive faas functions. In 2021
IEEE 14th International Conference on Cloud Computing (CLOUD),
pages 478–483, 2021.

[61] Mikhail Shilkov. Cold Starts in AWS Lambda.
https://mikhail.io/serverless/coldstarts/aws/. [Accessed: 01 May 2021].

[62] Edward Oakes, Leon Yang, Kevin Houck, Tyler Harter, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Pipsqueak: Lean Lambdas with
Large Libraries. In Proceedings - IEEE 37th International Conference on
Distributed Computing Systems Workshops, ICDCSW 2017, pages 395–
400, 2017.

[63] Jiacheng Shen, Tianyi Yang, Yuxin Su, Yangfan Zhou, and Michael R.
Lyu. Defuse: A dependency-guided function scheduler to mitigate cold
starts on faas platforms. In 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS), pages 194–204, 2021.

[64] Maciej Pawlik, Kamil Figiela, and Maciej Malawski. Performance evalu-
ation of parallel cloud functions. In Proceedings of the 47th International
Conference on Parallel Processing. Association for Computing Machinery,
2018. [Poster Presentation].

[65] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. Serverless
computing: An investigation of factors influencing microservice perfor-
mance. In 2018 IEEE International Conference on Cloud Engineering
(IC2E), pages 159–169, 2018.

[66] Anshul Jindal, Vladimir Podolskiy, and Michael Gerndt. Performance
modeling for cloud microservice applications. In Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering, pages
25–32, 2019.

MARKUS STEINBACH was born in Künzel-
sau, Baden-Württemberg, Germany in 1992. He
received the B.S. degree in business informatics
from the University of Jena, Germany, in 2018
and the M.S. degree in data engineering and an-
alytics from the Technical University of Munich,
Germany, in 2021.

From 2020 to 2021, he worked as a Data En-
gineer at Allianz Deutschland AG. His research
interests include temporal point processes and

serverless computing.

VOLUME 4, 2021 25

Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

ANSHUL JINDAL was born in India in 1992. He
received the B.Tech. degree in computer science
and engineering from the National Institute of
Technology, Hamirpur, India, in 2014, and M.Sc.
degree in computer science from the Technical
University of Munich, Germany, in 2018. He is
currently pursuing the Ph.D. degree with the Chair
of Computer Architecture and Parallel Systems,
Department of Computer Science, Technical Uni-
versity of Munich.

From 2014 to 2016, he worked at Samsung Semiconductors Bangalore,
India, as a senior software engineer. There, he worked on the development
of firmware for NVMe based PCIe SSDs. His research interests include
cloud computing, specifically focussing on serverless computing for hetero-
geneous systems, edge computing, and AIOps.

MOHAK CHADHA received the B.E. (Hons.) in
computer science and M.Sc. (Hons.) in Mathemat-
ics from the Birla Institute of Technology and Sci-
ence, Pilani, India in 2017. He received the M.Sc.
degree in computer science from the Technical
University of Munich, Germany, in 2020. He is
currently pursuing the Ph.D. degree with the Chair
of Computer Architecture and Parallel Systems,
Department of Computer Science, Technical Uni-
versity of Munich.

During his studies he interned at CEERI Pilani, centre for Information
System and High Performance Computing at TU Dresden, Nvidia, and
Airbus. His research interests include cloud computing, specifically fo-
cussing on serverless computing, high performance computing and federated
learning.

MICHAEL GERNDT received the Ph.D. degree
in computer science from the University of Bonn,
Germany, in 1989. He developed SUPERB the
first automatic parallelizer for distributed memory
parallel machines. For two years, in 1990 and
1991, he held a postdoc position at the University
of Vienna and joined research centre Juelich in
1992 where he concentrated on program languages
and implementation issues of shared virtual mem-
ory systems. This research led to his habilitation in

1998 at the Technical University of Munich. Since 2000 he is professor for
architecture of parallel and distributed systems at the Technical University
of Munich.

His current research focuses on programming models and tools for scal-
able parallel architectures. He is leading the development of the Periscope
Tuning Framework for automatic performance analysis and tuning of HPC
application. Within the Transregional Collaborative Research centre InvasIC
(TR 89) funded by the German Science Foundation, he investigates program-
ming models for elastic HPC applications. He is also researching resource
management for Cloud and Edge Computing in joint projects with industry.
In collaboration with Huawei in Munich, he is investigating smart Cloud
operations, especially with the focus on automatic anomaly detection.

Prof. Dr. Michael Gerndt is a member of the advisory board of Euro-
Par, as well as a member of the steering committees of several international
workshops.

SHAJULIN BENEDICT graduated in 2001 from
Manonmaniam Sunderanar University, India, with
distinction. In 2004, he received M.E degree in
digital communication and computer networking
from A.K.C.E, Anna University, Chennai. He was
the university second rank holder for his mas-
ters. He received Ph.D. degree in the area of grid
scheduling at Anna University, Chennai. After his
Ph.D. degree, he joined a research team in Ger-
many to pursue postdoctoral under the guidance

of Prof. Gerndt. He served as Professor at SXCCE research centre of
Anna University-Chennai. He currently works at the Indian Institute of
Information Technology, Kottayam, Kerala, India.

He currently also serves as Director/PI/Representative Officer of AIC-IIIT
Kottayam (Sec.8 Company) for nourishing young entrepreneurs of India.
His research interests include HPC/Cloud/Grid scheduling, performance
analysis of parallel applications (including exa-scale), cloud computing,
IIoT, blockchain, and parallel compilers.

26 VOLUME 4, 2021

